G+Smo  25.01.0
Geometry + Simulation Modules
 
Loading...
Searching...
No Matches
linearSolvers_example.cpp

Annotated source file

Here is the full file examples/linearSolvers_example.cpp. Clicking on a function or class name will lead you to its reference documentation.

#include <iostream>
#include <gismo.h>
using namespace gismo;
//Create a tri-diagonal matrix with -1 of the off diagonals and 2 in the diagonal.
//This matrix is equivalent to discretizing the 1D Poisson equation with homogenius
//Dirichlet boundary condition using a finite difference method. It is a SPD matrix.
//The solution is sin(pi*x);
void poissonDiscretization(gsSparseMatrix<> &mat, gsMatrix<> &rhs, index_t N)
{
rhs.setZero(N,1);
mat.resize(N,N);
mat.setZero();
real_t meshSize = 1./(N+1);
real_t pi = EIGEN_PI;
//Reserving space in the sparse matrix (Speeds up the assemble time of the matrix)
mat.reservePerColumn( 3 ); //Reserve 3 non-zero entry per column
mat(0,0) = 2;
mat(0,1) = -1;
mat(N-1, N-1) = 2;
mat(N-1, N-2) = -1;
for (index_t k = 1; k < N-1; ++k)
{
mat(k,k) = 2;
mat(k,k-1) = -1;
mat(k,k+1) = -1;
}
for (index_t k = 0; k < N; ++k)
rhs(k,0) = pi*pi*meshSize*meshSize*math::cos(meshSize*(1+k)*pi);
//Compress the matrix
mat.makeCompressed();
}
//Print out information of the iterative solver
template<typename SolverType>
void gsIterativeSolverInfo(const SolverType &method,
real_t error, double time, bool& succeeded )
{
gsInfo << method.detail();
gsInfo << " Computed res. error : " << error << "\n";
gsInfo << " Time to solve: : " << time << "\n";
if ( method.error() <= method.tolerance() && error <= method.tolerance() )
{
gsInfo <<" Test passed.\n";
}
else
{
gsInfo <<" TEST FAILED!\n";
succeeded = false;
}
}
int main(int argc, char *argv[])
{
bool succeeded = true;
index_t N = 100;
//Tolerance
real_t tol = std::pow(10.0, - REAL_DIG * 0.75);
gsCmdLine cmd("Solves a 1D PDE with a Courant discretization with several solvers.");
cmd.addInt ("n", "number", "Number of unknowns", N );
cmd.addReal("", "tol", "Tolerance for the iterative solvers", tol);
try { cmd.getValues(argc,argv); } catch (int rv) { return rv; }
//Assemble the 1D Poisson equation
poissonDiscretization(mat, rhs, N);
//The minimal residual implementation requires a preconditioner.
//We initialize an identity preconditioner (does nothing).
gsStopwatch clock;
//initial guess
#ifndef gsGmp_ENABLED
//Maximum number of iterations
index_t maxIters = 3*N;
opt.setInt ("MaxIterations", 3*N);
opt.setReal("Tolerance" , tol);
gsInfo << opt <<"\n";
gsInfo << "Testing G+Smo's linear solvers:\n";
//Initialize the MinRes solver
gsMinimalResidual<> MinRes(mat,preConMat);
MinRes.setOptions(opt);
//Set the initial guess to zero
x0.setZero(N,1);
//Solve system with given preconditioner (solution is stored in x0)
gsInfo << "\nMinRes: Started solving... ";
clock.restart();
MinRes.solve(rhs, x0);
gsInfo << "done.\n";
gsIterativeSolverInfo(MinRes, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
//Initialize the MinRes solver with inexact residual error norm
gsMinimalResidual<> MinResIR(mat,preConMat);
MinResIR.setOptions(opt);
MinResIR.setInexactResidual(true);
//Set the initial guess to zero
x0.setZero(N,1);
//Solve system with given preconditioner (solution is stored in x0)
gsInfo << "\nMinResIR: Started solving... ";
clock.restart();
MinResIR.solve(rhs, x0);
gsInfo << "done.\n";
gsIterativeSolverInfo(MinResIR, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
//Initialize the GMResSolver solver
gsGMRes<> GMResSolver(mat,preConMat);
GMResSolver.setOptions(opt);
//Set the initial guess to zero
x0.setZero(N,1);
if (N < 200)
{
//Solve system with given preconditioner (solution is stored in x0)
gsInfo << "\nGMRes: Started solving... ";
clock.restart();
GMResSolver.solve(rhs,x0);
gsInfo << "done.\n";
gsIterativeSolverInfo(GMResSolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
}
else
gsInfo << "\nSkipping GMRes due to high number of iterations...\n";
//Initialize the CG solver
gsConjugateGradient<> CGSolver(mat,preConMat);
CGSolver.setOptions(opt);
//Set the initial guess to zero
x0.setZero(N,1);
//Solve system with given preconditioner (solution is stored in x0)
gsInfo << "\nCG: Started solving... ";
clock.restart();
CGSolver.solve(rhs,x0);
gsInfo << "done.\n";
gsIterativeSolverInfo(CGSolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
//Initialize the MINRES-QLP solver
gsMinResQLP<> MRQLPSolver(mat,preConMat);
MRQLPSolver.setOptions(opt);
//Set the initial guess to zero
x0.setZero(N,1);
//Solve system with given preconditioner (solution is stored in x0)
gsInfo << "\nMRQLPSolver: Started solving... ";
clock.restart();
MRQLPSolver.solve(rhs,x0);
gsInfo << "done.\n";
gsIterativeSolverInfo(MRQLPSolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsInfo << "\nTesting Eigen's interative solvers:\n";
gsSparseSolver<>::CGIdentity EigenCGIsolver;
EigenCGIsolver.setMaxIterations(maxIters);
EigenCGIsolver.setTolerance(tol);
gsInfo << "\nEigen's CG + identity prec.: Started solving... ";
clock.restart();
EigenCGIsolver.compute(mat);
x0 = EigenCGIsolver.solve(rhs);
gsInfo << "done.\n";
gsIterativeSolverInfo(EigenCGIsolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsSparseSolver<>::CGDiagonal EigenCGDsolver;
EigenCGDsolver.setMaxIterations(maxIters);
EigenCGDsolver.setTolerance(tol);
gsInfo << "\nEigen's CG + diagonal prec.: Started solving... ";
clock.restart();
EigenCGDsolver.compute(mat);
x0 = EigenCGDsolver.solve(rhs);
gsInfo << "done.\n";
gsIterativeSolverInfo(EigenCGDsolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsSparseSolver<>::BiCGSTABIdentity EigenBCGIsolver;
EigenBCGIsolver.setMaxIterations(maxIters);
EigenBCGIsolver.setTolerance(tol);
gsInfo << "\nEigen's bi conjugate gradient stabilized + identity prec.: Started solving... ";
clock.restart();
EigenBCGIsolver.compute(mat);
x0 = EigenBCGIsolver.solve(rhs);
gsInfo << "done.\n";
gsIterativeSolverInfo(EigenBCGIsolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsSparseSolver<>::BiCGSTABDiagonal EigenBCGDsolver;
EigenBCGDsolver.setMaxIterations(maxIters);
EigenBCGDsolver.setTolerance(tol);
gsInfo << "\nEigen's bi conjugate gradient stabilized solver + diagonal prec.: Started solving... ";
clock.restart();
EigenBCGDsolver.compute(mat);
x0 = EigenBCGDsolver.solve(rhs);
gsInfo << "done.\n";
gsIterativeSolverInfo(EigenBCGDsolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsSparseSolver<>::BiCGSTABILUT EigenBCGILUsolver;
//EigenBCGILUsolver.preconditioner().setFillfactor(1);
EigenBCGILUsolver.setMaxIterations(maxIters);
EigenBCGILUsolver.setTolerance(tol);
gsInfo << "\nEigen's bi conjugate gradient stabilized solver + ILU prec.: Started solving... ";
clock.restart();
EigenBCGILUsolver.compute(mat);
x0 = EigenBCGILUsolver.solve(rhs);
gsInfo << "done.\n";
gsIterativeSolverInfo(EigenBCGILUsolver, (mat*x0-rhs).norm()/rhs.norm(), clock.stop(), succeeded);
gsSparseSolver<>::SimplicialLDLT EigenSLDLTsolver;
gsInfo << "\nEigen's Simplicial LDLT: Started solving... ";
clock.restart();
EigenSLDLTsolver.compute(mat);
x0 = EigenSLDLTsolver.solve(rhs);
gsInfo << "done.\n";
gsInfo << "Eigen's Simplicial LDLT: Time to solve : " << clock.stop() << "\n";
gsSparseSolver<>::QR solverQR;
gsInfo << "\nEigen's QR: Started solving... ";
clock.restart();
solverQR.compute(mat);
x0 = solverQR.solve(rhs);
gsInfo << "done.\n";
gsInfo << "Eigen's QR: Time to solve : " << clock.stop() << "\n";
#endif
gsSparseSolver<>::LU solverLU;
gsInfo << "\nEigen's LU: Started solving... ";
clock.restart();
solverLU.compute(mat);
x0 = solverLU.solve(rhs);
gsInfo << "done.\n";
gsInfo << "Eigen's LU: Time to solve : " << clock.stop() << "\n";
return succeeded ? EXIT_SUCCESS : EXIT_FAILURE;
}
Class for command-line argument parsing.
Definition gsCmdLine.h:57
The conjugate gradient method.
Definition gsConjugateGradient.h:30
The generalized minimal residual (GMRES) method.
Definition gsGMRes.h:25
A Stopwatch object can be used to measure execution time of code, algorithms, etc.
Definition gsStopwatch.h:73
double stop()
Return elapsed time in seconds.
Definition gsStopwatch.h:83
void restart()
Start taking the time.
Definition gsStopwatch.h:80
static uPtr make(index_t dim)
Make function returning a smart pointer.
Definition gsLinearOperator.h:132
static gsOptionList defaultOptions()
Returns a list of default options.
Definition gsIterativeSolver.h:92
memory::shared_ptr< gsLinearOperator > Ptr
Shared pointer for gsLinearOperator.
Definition gsLinearOperator.h:33
A matrix with arbitrary coefficient type and fixed or dynamic size.
Definition gsMatrix.h:41
The minimal residual (MinRes-QLP) method.
Definition gsMinResQLP.h:34
The minimal residual (MinRes) method.
Definition gsMinimalResidual.h:26
Class which holds a list of parameters/options, and provides easy access to them.
Definition gsOptionList.h:33
void setReal(const std::string &label, const Real &value)
Sets an existing option label to be equal to value.
Definition gsOptionList.cpp:166
void setInt(const std::string &label, const index_t &value)
Sets an existing option label to be equal to value.
Definition gsOptionList.cpp:158
Sparse matrix class, based on gsEigen::SparseMatrix.
Definition gsSparseMatrix.h:139
Main header to be included by clients using the G+Smo library.
#define index_t
Definition gsConfig.h:32
#define gsInfo
Definition gsDebug.h:43
The G+Smo namespace, containing all definitions for the library.