G+Smo  25.01.0
Geometry + Simulation Modules
 
Loading...
Searching...
No Matches
sparseSolvers_example.cpp

Annotated source file

Here is the full file examples/sparseSolvers_example.cpp. Clicking on a function or class name will lead you to its reference documentation.

#include <gismo.h>
using namespace gismo;
void report( const gsVector<>& computedSolution, const gsVector<>& exactSolution, bool& succeeded )
{
gsInfo << " Computed solution: " << computedSolution.transpose() << "\n";
if ( (computedSolution-exactSolution).norm() <= 1.e-10 )
{
gsInfo << " Test passed.\n";
}
else
{
gsInfo << " Test faild.\n";
succeeded = false;
}
gsInfo << "\n";
}
int main(int argc, char** argv)
{
#ifdef EIGEN_USE_MKL
gsInfo << "EIGEN_USE_MKL=true.\n";
#endif
std::string fn("");
index_t mat_size = 10;
gsCmdLine cmd("Testing the use of sparse linear solvers.");
cmd.addPlainString("try", "Name of the solver to try", fn);
cmd.addInt("n", "size", "Size of the matrices", mat_size);
try { cmd.getValues(argc,argv); } catch (int rv) { return rv; }
gsSparseMatrix<> Q(mat_size,mat_size);
gsVector<> b(mat_size), x(mat_size), x0(mat_size);
x0.setOnes();
bool succeeded = true;
Q.reserve( gsVector<int>::Constant(mat_size,1) ); // Reserve memory for 1 non-zero entry per column
for (index_t i = 0; i!=mat_size; ++i)
Q(i,i) = b[i] = i+1;
Q.makeCompressed(); // always call makeCompressed after sparse matrix has been filled
if (!fn.empty())
{
gsSparseSolver<>::uPtr slv = gsSparseSolver<>::get(fn);
slv->compute(Q);
x = slv->solve(b);
gsInfo << "Solve Ax = b with "<< *slv <<" sparse linear solver.\n";
report( x, x0, succeeded );
return succeeded ? 0 : 1;
}
gsSparseSolver<>::CGIdentity solverCGI;
solverCGI.compute(Q);
x = solverCGI.solve(b);
gsInfo << "Solve Ax = b with Eigen's CG identity preconditioner.\n";
report( x, x0, succeeded );
gsSparseSolver<>::CGDiagonal solverCGD;
solverCGD.compute(Q); x = solverCGD.solve(b);
gsInfo << "Solve Ax = b with Eigen's CG diagonal preconditioner.\n";
report( x, x0, succeeded );
gsSparseSolver<>::BiCGSTABILUT solverBCGILU;
solverBCGILU.compute(Q);
x = solverBCGILU.solve(b);
gsInfo << "Solve Ax = b with Eigen's BiCG with ILU preconditioner.\n";
report( x, x0, succeeded );
gsSparseSolver<>::BiCGSTABDiagonal solverBCGD;
solverBCGD.compute(Q);
x = solverBCGD.solve(b);
gsInfo << "Solve Ax = b with Eigen's BiCG with diagonal preconditioner.\n";
report( x, x0, succeeded );
gsSparseSolver<>::BiCGSTABIdentity solverBCDI;
solverBCDI.compute(Q);
x = solverBCDI.solve(b);
gsInfo << "Solve Ax = b with Eigen's BiCG without preconditioner.\n";
report( x, x0, succeeded );
gsSparseSolver<>::SimplicialLDLT solverSLDLT;
solverSLDLT.compute(Q);
x = solverSLDLT.solve(b);
gsInfo << "Solve Ax = b with Eigen's Simplicial LDLT.\n";
report( x, x0, succeeded );
gsSparseSolver<>::QR solverQR;
solverQR.compute(Q);
x = solverQR.solve(b);
gsInfo << "Solve Ax = b with Eigen's QR factorization.\n";
report( x, x0, succeeded );
gsSparseSolver<>::LU solverLU;
solverLU.compute(Q);
x = solverLU.solve(b);
gsInfo << "Solve Ax = b with Eigen's LU factorization.\n";
report( x, x0, succeeded );
#ifdef GISMO_WITH_PARDISO
gsSparseSolver<>::PardisoLU solverpLU;
solverpLU.compute(Q);
x = solverpLU.solve(b);
gsInfo << "Error code of pardiso "<< solverpLU.info() <<"\n";
gsInfo << "Solve Ax = b with PardisoLU.\n";
report( x, x0, succeeded );
gsSparseSolver<>::PardisoLDLT solverLDLT;
solverLDLT.compute(Q);
x = solverLDLT.solve(b);
gsInfo << "Error code of pardiso "<< solverLDLT.info() <<"\n";
gsInfo << "Solve Ax = b with PardisoLDLT.\n";
report( x, x0, succeeded );
gsSparseSolver<>::PardisoLLT solverLLT;
solverLLT.compute(Q);
x = solverLLT.solve(b);
gsInfo << "Error code of pardiso "<< solverLLT.info() <<"\n";
gsInfo << "Solve Ax = b with PardisoLLT.\n";
report( x, x0, succeeded );
# else
gsInfo << "PARDISO is not available.\n";
# endif
#ifdef GISMO_WITH_SUPERLU
gsSparseSolver<>::SuperLU solverSLU;
solverSLU.compute(Q);
x = solverSLU.solve(b);
gsInfo << "Solve Ax = b with Super.\n";
report( x, x0, succeeded );
# else
gsInfo << "SuperLU is not available.\n";
# endif
#ifdef GISMO_WITH_PASTIX
gsInfo << "PastiX is not available.\n";
# else
gsInfo << "PastiX is not available.\n";
# endif
return succeeded ? 0 : 1;
}
Class for command-line argument parsing.
Definition gsCmdLine.h:57
Sparse matrix class, based on gsEigen::SparseMatrix.
Definition gsSparseMatrix.h:139
Abstract class for solvers. The solver interface is base on 3 methods: -compute set the system matrix...
Definition gsSparseSolver.h:67
A vector with arbitrary coefficient type and fixed or dynamic size.
Definition gsVector.h:37
Main header to be included by clients using the G+Smo library.
#define index_t
Definition gsConfig.h:32
#define gsInfo
Definition gsDebug.h:43
The G+Smo namespace, containing all definitions for the library.