G+Smo
25.01.0
Geometry + Simulation Modules
|
Class for computing a closed B-spline curve with a smaller number of curvature extrema compared to a given closed B-spline curve.
i.e. some kind of smoothing the curvature of the curve with the help of two different methods
Public Member Functions | |
void | computeApproxError (T &error) |
computes approximation error of the smoother curve to the original point cloud | |
void | computeApproxErrorCoef (T &error) |
computes the max approximation error between the coeffeicientsof the original and the smoother curve | |
void | computeApproxErrorL2 (T &error) |
computes the L^{2}-norm approximation error of the smoother curve | |
void | computeApproxErrorLMax (T &error) |
computes the L-max-norm approximation error of the smoother curve | |
void | computeCurvatureError (T &error) |
computes the curvature error of the smoother curve | |
const gsBSpline< T > & | curveOriginal () const |
gives back the original B-spline curve | |
const gsBSpline< T > & | curveSmooth () const |
gives back the smoother B-spline curve | |
gsCurvatureSmoothing () | |
default constructor | |
gsCurvatureSmoothing (const gsBSpline< T > &init_curve, const gsMatrix< T > ¶m_values, const gsMatrix< T > &points) | |
constructor | |
void | smoothAllHadenfeld (const unsigned smooth_degree=4, const unsigned iter=500) |
void | smoothHadenfeld (const unsigned smooth_degree, const T delta, const index_t iter_step, const index_t iter_total, gsVector< index_t > &iterated, const bool original=true) |
smooth the curve by smoothing only one cofficient in each step using the Hadenfeld algorithm — the usual Hadenfeld algorithm –this method should be used | |
void | smoothTotalVariation (const T omega1, const T omega2, const T lamda, const T tau, const unsigned iter=50) |
void | smoothTotalVariationSelectLamda (const T omega1, const T omega2, const gsMatrix< T > listlamdas, const unsigned iter=50) |
void | smoothTotalVariationSelectLamda (const T omega1, const T omega2, const T lamda, const unsigned iter=50) |
void | write (std::ostream &os) |
writes the smooth curve to a file, which can be visualized in Mathematica (Name of Mathematica File VisualizationCurvatureSmoothing) | |
~gsCurvatureSmoothing () | |
Destructor. | |
Private Member Functions | |
void | compute_AllValues (gsBSplineBasis< T > *basis, gsMatrix< T > u, gsMatrix< T > *coefs, gsMatrix< T > &values0, gsMatrix< T > &values1, gsMatrix< T > &values2, gsMatrix< T > &values3) |
computes all values and derivatives (up to three) at the parameter values u for the given coefs | |
void | compute_ObjectiveFunction (gsBSplineBasis< T > *basis, gsMatrix< T > *coefs, const T omega1, const T omega2, T &value) |
computes the objective function for given coefs and omega1 and omega2 – objective function = omega1*ApproximationFunction + omega2*CurvatureFunction | |
void | reset (gsBSpline< T > *newCurve) |
set the smooth curve to the the original curve | |
Private Attributes | |
const gsBSpline< T > * | m_curve_original |
the original B-spline curve | |
gsBSpline< T > * | m_curve_smooth |
the smoother B-spline curve | |
gsMatrix< T > | m_param_values |
the parameter values of the original point cloud | |
gsMatrix< T > | m_points |
the points of the original point cloud | |
void smoothAllHadenfeld | ( | const unsigned | smooth_degree = 4 , |
const unsigned | iter = 500 |
||
) |
smooth the curve in one step for all coefficients using the Hadenfeld algorithm. Be aware of the fact that it is not ensured that we get a nice result — can work but do not have to work (not sure that it will converge!!) if possible use method void smoothHadenfeld
void smoothTotalVariation | ( | const T | omega1, |
const T | omega2, | ||
const T | lamda, | ||
const T | tau, | ||
const unsigned | iter = 50 |
||
) |
smooth the curve by total variation – computes the stepsize by itsself (with the help of a backtracking line search method) this method should be used instead of the two methods void smoothTotalVariationSelectLamda
void smoothTotalVariationSelectLamda | ( | const T | omega1, |
const T | omega2, | ||
const gsMatrix< T > | listlamdas, | ||
const unsigned | iter = 50 |
||
) |
smooth the curve by total variation – uses different stepsizes (in listlamdas) in the gradient descent method (look for the best from the list!) if possible use the method void smoothTotalVariation
void smoothTotalVariationSelectLamda | ( | const T | omega1, |
const T | omega2, | ||
const T | lamda, | ||
const unsigned | iter = 50 |
||
) |
smooth the curve by total variation – uses always the same stepsize lamda - but which has to be chosen!! if possible use the method void smoothTotalVariation