G+Smo  24.08.0
Geometry + Simulation Modules
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gsBSplineBasis.hpp
Go to the documentation of this file.
1 
14 #pragma once
15 
16 #include <gsNurbs/gsBSpline.h>
18 
19 #include <gsNurbs/gsDeboor.hpp>
20 #include <gsNurbs/gsBoehm.h>
22 
23 #include <gsUtils/gsMesh/gsMesh.h>
24 
25 #include <gsMatrix/gsSparseRows.hpp>
26 
27 #include <gsIO/gsXml.h>
28 
29 namespace gismo
30 {
31 
32 
33 template <class T>
34 typename gsTensorBSplineBasis<1,T>::Self_t *
35 gsTensorBSplineBasis<1,T>::New(std::vector<gsBasis<T>*> & bb )
36 {
37  GISMO_ASSERT( bb.size() == 1, "Expecting one component");
38  Self_t * c = dynamic_cast<Self_t*>(bb.front());
39  if ( NULL != c )
40  {
41  bb.clear();
42  return c;
43  }
44  else
45  {
46  gsWarn<<"Something went wrong during BSpline construction.\n";
47  return NULL;
48  }
49 }
50 
51 template <class T>
53 {
54  return m_knots.uFind(u(0,0)).uIndex();
55 }
56 
57 template <class T>
59 {
60  return m_knots.uFind( u ).uIndex();
61 }
62 
63 template <class T>
65 {
66  typename KnotVectorType::smart_iterator it = m_knots.sbegin() + j;
67  index_t v = ( (it+m_knots.degree()+1).uIndex() - it.uIndex() ) / 2 ;
68  it.uAdd(v);
69  gsMatrix<T> rvo(1,2);
70  rvo(0,0) = it.value();
71  it.uNext();
72  rvo(0,1) = it.value();
73  // // take indexed support
74  // gsMatrix<index_t,1,2> isup(1,2);
75  // this->elementSupport_into(i, isup);
76  // // take the middle element
77  // isup.at(0) = (isup.at(0)+isup.at(1))/2;
78  // isup.at(1) = isup.at(0)+1;
79  // // take coordinates
80  // gsMatrix<T> rvo(1,2);
81  // rvo(0,0) = m_knots.uValue(isup.at(0));
82  // rvo(0,1) = m_knots.uValue(isup.at(1));
83  return rvo;
84 }
85 
86 template <class T>
88  gsMesh<T> & mesh) const
89 {
90  const index_t sz = size();
91  GISMO_ASSERT( nodes.rows() == sz, "Invalid input.");
92 
93  // Add first vertex
94  if ( sz != 0 )
95  mesh.addVertex( nodes.row(0).transpose() );
96 
97  // Add adges and vertices
98  for(index_t i = 1; i< sz; ++i )
99  {
100  mesh.addVertex( nodes.row(i).transpose() );
101  mesh.addEdge( i-1, i );
102  }
103 
104  if ( m_periodic )
105  mesh.addEdge( sz-1, 0);
106 }
107 
108 template <class T>
110  const gsBasis<T> & other,
111  gsMatrix<index_t> & bndThis,
112  gsMatrix<index_t> & bndOther) const
113 {
114  if ( const TensorSelf_t * _other = dynamic_cast<const TensorSelf_t*>(&other) )
115  {
116  bndThis .resize(1,1);
117  bndOther.resize(1,1);
118  bndThis (0,0) = bi.first() .side() == 1 ? 0 : m_knots.size() -m_p-2;
119  bndOther(0,0) = bi.second().side() == 1 ? 0 : _other->m_knots.size()-_other->m_p-2;
120  return;
121  }
122 
123  gsWarn<< "Cannot match with "<< other <<"\n";
124 }
125 
126 template <class T>
128  gsMatrix<index_t>& result ) const
129 {
130  result.resize(m_p+1, u.cols());
131 
132  if ( m_periodic )
133  {
134  // We want to keep the non-periodic case unaffected wrt
135  // complexity, therefore we keep the modulo operation of the
136  // periodic case separate
137  const index_t s = size();
138  for (index_t j = 0; j < u.cols(); ++j)
139  {
140  unsigned first = firstActive(u(0,j));
141  for (int i = 0; i != m_p+1; ++i)
142  result(i,j) = (first++) % s;
143  }
144  }
145  else
146  {
147  for (index_t j = 0; j < u.cols(); ++j)
148  {
149  unsigned first = firstActive(u(0,j));
150  for (int i = 0; i != m_p+1; ++i)
151  result(i,j) = first++;
152  }
153  }
154 }
155 
156 template <class T>
158 {
159  GISMO_ASSERT( u.rows() == 1, "Invalid input.");
160  // Note: right end of the support will be considered active
161  return( (u.value() >= m_knots[i]) && (u.value() <= m_knots[i+m_p+1]) );
162 }
163 
164 template <class T>
166 {
167  if( m_periodic ) // Periodic basis does not have such things as boundaries.
168  {
169  gsWarn << "Periodic basis does not have such things as boundaries.\n";
170  // return NULL;
171  gsMatrix<index_t> matrix;
172  return matrix;
173  }
174  else
175  {
176  gsMatrix<index_t> res(2,1);
177  res(0,0) = 0;
178  res(1,0) = m_knots.size()-m_p-2;
179  return res;
180  }
181 }
182 
183 
184 template <class T>
186  index_t offset ) const
187 {
188  if( m_periodic )
189  gsWarn << "Periodic basis does not have such things as boundaries.\n";
190 
191  gsMatrix<index_t> res(1,1);
192  GISMO_ASSERT(offset+m_p+1 < static_cast<index_t>(m_knots.size()),
193  "Offset cannot be bigger than the amount of basis functions orthogonal to Boxside s!");
194  switch (s) {
195  case boundary::left : // left
196  res(0,0)= offset;
197  break;
198  case boundary::right : // right
199  res(0,0)= m_knots.size()-m_p-2-offset;
200  break;
201  default:
202  GISMO_ERROR("gsBSplineBasis: valid sides is left(west) and right(east).");
203  };
204  return res;
205 }
206 
208 template <class T>
210 {
211  return new gsConstantBasis<T>(1.0);
212 }
214 
215 template <class T>
217 {
218  // The support of a the whole B-spline basis is the interval
219  // between m_knots[m_p] and m_knots[i+m_p+1].
220  // First m_p and last m_p knots are the "ghost" knots and are not
221  // part of the domain
222  gsMatrix<T> res(1,2);
223  res << domainStart() , domainEnd() ;
224  return res ;
225 }
226 
227 template <class T>
229 {
230  // Note: in the periodic case last index is
231  // m_knots.size() - m_p - 1 - m_periodic
232  // but we may still accept the original index of the basis function.
233  // One issue is that in the periodic case the basis function
234  // support has two connected components, so probably one should
235  // call this function with twice for the two twins
236 
237  GISMO_ASSERT( static_cast<size_t>(i) < m_knots.size()-m_p-1,
238  "Invalid index of basis function." );
239  gsMatrix<T> res(1,2);
240  res << ( i > m_p ? m_knots[i] : m_knots[m_p] ),
241  ( static_cast<size_t>(i) < (m_knots.size()-2*m_p-2) ? m_knots[i+m_p+1] :
242  m_knots[m_knots.size()-m_p-1] );
243  return res ;
244 }
245 
246 template <class T>
248 {
249  if( m_periodic == 0 )
250  return i;
251  const index_t s = size();
252  if ( i < static_cast<index_t>(m_periodic) )
253  i += s;
254  else if ( i > s )
255  i -= s;
256  return i;
257 }
258 
259 template <class T>
261 {
262  result.resize(m_p+1, u.cols() );
263 
264 #if (FALSE)
265 
266  typename KnotVectorType::const_iterator kspan;
267 
268  // Low degree specializations
269  switch (m_p)
270  {
271  case 0: // constant B-splines
272  result.setOnes();
273  return;
274 
275  case 1:
276  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
277  if ( ! inDomain( u(0,v) ) )
278  result.col(v).setZero();
279  else
280  {
281  kspan = m_knots.findspanIter ( u(0,v) );
282  bspline::evalDeg1Basis( u(0,v), kspan, m_p, result.col(v) );
283  }
284  return;
285  case 2:
286  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
287  if ( ! inDomain( u(0,v) ) )
288  result.col(v).setZero();
289  else
290  {
291  kspan = m_knots.findspanIter ( u(0,v) );
292  bspline::evalDeg2Basis( u(0,v), kspan, m_p, result.col(v) );
293  }
294  return;
295  case 3:
296  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
297  if ( ! inDomain( u(0,v) ) )
298  result.col(v).setZero();
299  else
300  {
301  kspan = m_knots.findspanIter ( u(0,v) );
302  bspline::evalDeg3Basis( u(0,v), kspan, m_p, result.col(v) );
303  }
304  return;
305  };
306 
307  STACK_ARRAY(T, left, m_p + 1);
308  STACK_ARRAY(T, right, m_p + 1);
309 
310  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
311  {
312  // Check if the point is in the domain
313  if ( ! inDomain( u(0,v) ) )
314  {
315  // gsWarn<< "Point "<< u(0,v) <<" not in the BSpline domain.\n";
316  result.col(v).setZero();
317  }
318  else
319  { // Locate the point in the knot-vector
320  kspan = m_knots.findspanIter ( u(0,v) );
321  // Run evaluation algorithm
322  bspline::evalBasis( u(0,v), kspan, m_p, left, right, result.col(v) );
323  }
324  }
325 
326 #endif
327 //#if (FALSE)
328  STACK_ARRAY(T, left, m_p + 1);
329  STACK_ARRAY(T, right, m_p + 1);
330 
331  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
332  {
333  // Check if the point is in the domain
334  if ( ! inDomain( u(0,v) ) )
335  {
336  // gsWarn<< "Point "<< u(0,v) <<" not in the BSpline domain.\n";
337  result.col(v).setZero();
338  continue;
339  }
340 
341  // Run evaluation algorithm
342 
343  // Get span of absissae
344  unsigned span = m_knots.iFind( u(0,v) ) - m_knots.begin() ;
345 
346  //ndu[0] = (T)(1); // 0-th degree function value
347  result(0,v)= (T)(1); // 0-th degree function value
348 
349  for(int j=1; j<= m_p; ++j) // For all degrees ( ndu column)
350  {
351  left[j] = u(0,v) - m_knots[span+1-j];
352  right[j] = m_knots[span+j] - u(0,v);
353  T saved = (T)(0) ;
354 
355  for(int r=0; r!=j ; ++r) // For all (except the last) basis functions of degree j ( ndu row)
356  {
357  // Strictly lower triangular part: Knot differences of distance j
358  //ndu[j*p1 + r] = right[r+1]+left[j-r] ;
359 
360  //const T temp = ndu[r*p1 + j-1] / ndu[j*p1 + r] ;
361  const T temp = result(r,v) / ( right[r+1] + left[j-r] );
362  // Upper triangular part: Basis functions of degree j
363  //ndu[r*p1 + j] = saved + right[r+1] * temp ;// r-th function value of degree j
364  result(r,v) = saved + right[r+1] * temp ;// r-th function value of degree j
365  saved = left[j-r] * temp ;
366  }
367  //ndu[j*p1 + j] = saved ;// Diagonal: j-th (last) function value of degree j
368  result(j,v) = saved;
369  }
370 
371  }// end for all columns v
372 //#endif
373 }
374 
375 
376 template <class T>
378  const gsMatrix<T> & u,
379  gsMatrix<T>& result) const
380 {
381  GISMO_ASSERT( static_cast<size_t>(i) < m_knots.size()-m_p-1,"Invalid index of basis function." );
382 
383  result.resize(1, u.cols() );
384  STACK_ARRAY(T, N, m_p + 1);
385 
386  for (index_t s=0;s<u.cols(); ++s)
387  {
388  //Special cases
389 
390  // Periodic basis ?
391  // Note: for periodic, i is understood modulo the basis size
392  if( m_periodic )
393  {
394  // Basis is periodic and i could be among the crossing functions.
395  if( static_cast<int>(i) <= m_periodic )
396  {
397  gsMatrix<T> supp = support(i);
398  if( u(0,s) < supp(0) || u(0,s) > supp(1)) // u is outside the support of B_i
399  i += size(); // we use the basis function ignored ny the periodic construction
400  }
401  }
402 
403  // Special case of C^{-1} on right end of support
404  if ( (static_cast<size_t>(i) == m_knots.size()-m_p-2) &&
405  (u(0,s) == m_knots.last()) && (u(0,s)== m_knots[m_knots.size()-m_p-1]) )
406  {
407  result(0,s)= (T)(1.0);
408  continue;
409  }
410 
411  // Locality property
412  if ( (u(0,s) < m_knots[i]) || (u(0,s) >= m_knots[i+m_p+1]) )
413  {
414  result(0,s)= (T)(0.0);
415  continue;
416  }
417 
418  //bspline::deBoorTriangle( u(0,s), m_knots.begin() + i, m_p, N );
419  //result(0,s) = N[ m_p ];
420 
421  // Initialize zeroth degree functions
422  for (int j=0;j<=m_p; ++j)
423  if ( u(0,s) >= m_knots[i+j] && u(0,s) < m_knots[i+j+1] )
424  N[j] = (T)(1.0);
425  else
426  N[j] = (T)(0.0);
427  // Compute according to the trangular table
428  for (int k=1;k<=m_p; ++k)
429  {
430  T saved;
431  if (N[0] == (T)(0.0))
432  saved = (T)(0.0);
433  else
434  saved= ((u(0,s) - m_knots[i] )* N[0]) / (m_knots[k+i] - m_knots[i]);
435  for (int j=0;j<m_p-k+1; ++j)
436  {
437  const T kleft = m_knots[i+j+1];
438  const T kright = m_knots[i+j+k+1];
439  if ( N[j+1] == (T)(0.0) )
440  {
441  N[j] = saved;
442  saved = (T)(0.0);
443  }
444  else
445  {
446  const T temp = N[j+1] / ( kright - kleft );
447  N[j]= saved + ( kright-u(0,s) )*temp;
448  saved= (u(0,s) -kleft ) * temp;
449  }
450  }
451  }
452  result(0,s) = N[0];
453  }
454 }
455 
456 template <class T>
458  const gsMatrix<T> & u,
459  int n,
460  gsMatrix<T>& result) const
461 {
462  GISMO_ASSERT( u.rows() == 1 , "gsBSplineBasis accepts points with one coordinate.");
463  // This is a copy of the interior of evalAllDerSingle_into() except for the last for cycle with k.
464 
465  // Notation from the NURBS book:
466  // p - degree
467  // U = {u[0],...,u[m]} the knot vector
468  // i - id of the basis function (hopefully the same ;)
469  // u - parameter (where to evaluate)
470 
471  // Note that N[i][k] = N[ i*table_size + k ].
472 
473  T saved;
474  T Uleft;
475  T Uright;
476  T temp;
477  const unsigned int table_size = m_p + 1;
478  STACK_ARRAY(T, N, table_size*table_size);
479  STACK_ARRAY(T, ND, table_size);
480 
481  result.resize(1, u.cols()); // (1 derivative) times number of points of evaluation.
482 
483  // From here on, we follow the book.
484  for( index_t s = 0; s < u.cols(); s++ )
485  {
486  // Special cases
487  // Periodic basis
488  if( (int)(i) <= m_periodic ) // Basis is periodic and i could be among the crossing functions.
489  {
490  gsMatrix<T> supp = support(i);
491  if( u(0,s) < supp(0) || u(0,s) > supp(1)) // u is outside the support of B_i
492  i += size(); // we use the basis function ignored ny the periodic construction
493  }
494 
495  if( u(0,s) == m_knots.last() )
496  gsWarn << "evalDerSingle_into sometimes gives strange results for the last knot.\n";
497 
498  if( u(0,s) < m_knots[i] || u(0,s) >= m_knots[i+m_p+1]) // Local property
499  {
500  // If we are outside the support, the value and all the
501  // derivatives there are equal to zero.
502  result(0,s ) = 0;
503  continue;// to the next point
504  }
505 
506  bspline::deBoorTriangle( u(0,s), m_knots.begin() + i, m_p, N );
507 
508  /*
509  for( int j = 0; j <= m_p; j++ ) // Initialize zeroth-degree functions
510  if( u(0,s) >= m_knots[i+j] && u(0,s) < m_knots[i+j+1] )
511  N[ j*table_size ] = 1;
512  else
513  N[ j*table_size ] = 0;
514  for( int k = 1; k <= m_p; k++ ) // Compute full triangular table
515  {
516  if( N[(k-1)] == 0 )
517  saved = 0;
518  else
519  saved = ((u(0,s)-m_knots[i])*N[ k-1 ])/(m_knots[i+k]-m_knots[i]);
520  for( int j = 0; j < m_p-k+1; j++)
521  {
522  Uleft = m_knots[i+j+1];
523  Uright = m_knots[i+j+k+1];
524  if( N[ (j+1)*table_size + (k-1) ] == 0 )
525  {
526  N[ j*table_size + k ] = saved;
527  saved = 0;
528  }
529  else
530  {
531  temp = N[ (j+1)*table_size + (k-1) ]/(Uright-Uleft);
532  N[ j*table_size + k ] = saved + (Uright-u(0,s))*temp;
533  saved = (u(0,s)-Uleft)*temp;
534  }
535  }
536  }*/
537 
538  // Not tested few lines:
539  if( n == 0 )
540  {
541  result(0,s) = N[ m_p ]; // The function value
542  continue;
543  }
544 
545  for( int j = 0; j <= n; j++ ) // Load appropriate column
546  ND[j] = N[ j*table_size + (m_p-n) ];
547  for( int jj = 1; jj <= n; jj++ ) // Compute table of width n
548  {
549  if( ND[0] == 0 )
550  saved = 0;
551  else
552  saved = ND[0]/(m_knots[ i+m_p-n+jj ] - m_knots[i]);
553  for( int j = 0; j < n-jj+1; j++ )
554  {
555  Uleft = m_knots[i+j+1];
556  Uright = m_knots[i+j+m_p-n+jj+1];
557  if( ND[j+1] == 0 )
558  {
559  ND[j] = static_cast<T>(m_p-n+jj)*saved;
560  saved = 0;
561  }
562  else
563  {
564  temp = ND[j+1]/(Uright - Uleft);
565  ND[j] = static_cast<T>(m_p-n+jj)*(saved - temp);
566  saved = temp;
567  }
568  }
569  }
570  result(0,s) = ND[0]; // n-th derivative
571  }
572  // Changes from the book: notation change, stack arrays instead of normal C arrays, changed all 0.0s and 1.0s into 0 and 1. No return in the first check
573  // Warning: Segmentation fault if n > m_p.
574 
575 }
576 
577 template <class T> inline
579  const gsMatrix<T> & coefs,
580  gsMatrix<T>& result) const
581 {
582  GISMO_ASSERT( u.rows() == 1 , "gsBSplineBasis accepts points with one coordinate (got "
583  <<u.rows()<<").");
584  if( m_periodic == 0 )
585  gsDeboor(u, m_knots, m_p, coefs, result); // De Boor's algorithm
586  else
587  {
588  gsDeboor(u, m_knots, m_p, perCoefs(coefs), result); // Make sure that the ghost coefficients agree with the beginning of the curve.
589  }
590  // return gsBasis<T>::eval(u,coefs); // defalult gsBasis implementation
591 }
592 
593 
594 template <class T> inline
596 {
597  GISMO_ASSERT( u.rows() == 1 , "gsBSplineBasis accepts points with one coordinate.");
598 
599  const int pk = m_p-1 ;
600  const int p1 = m_p + 1; // degree plus one
601  STACK_ARRAY(T, ndu , m_p);
602  STACK_ARRAY(T, left , p1 );
603  STACK_ARRAY(T, right, p1 );
604 
605  result.resize( m_p + 1, u.cols() ) ;
606 
607  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
608  {
609  // Check if the point is in the domain
610  if ( ! inDomain( u(0,v) ) )
611  {
612  // gsWarn<< "Point "<< u(0,v) <<" not in the BSpline domain.\n";
613  result.col(v).setZero();
614  continue;
615  }
616 
617  // Run evaluation algorithm and keep first derivative
618 
619  // Get span of absissae
620  typename KnotVectorType::iterator span = m_knots.iFind( u(0,v) );
621 
622  ndu[0] = (T)(1); // 0-th degree function value
623  left[0] = 0;
624 
625  for(int j=1; j<m_p ; j++) // For all degrees
626  {
627  // Compute knot splits
628  left[j] = u(0,v) - *(span+1-j);
629  right[j] = *(span+j) - u(0,v);
630 
631  // Compute Basis functions of degree m_p-1 ( ndu[] )
632  T saved = (T)(0) ;
633  for(int r=0; r<j ; r++) // For all (except the last) basis functions of degree 1..j
634  {
635  const T temp = ndu[r] / ( right[r+1] + left[j-r] ) ;
636  ndu[r] = saved + right[r+1] * temp ;// r-th function value of degree 1..j
637  saved = left[j-r] * temp ;
638  }
639  ndu[j] = saved ;// last function value of degree 1..j
640  }
641 
642  // Compute last knot split
643  left[m_p] = u(0,v) - *(span+1-m_p);
644  right[m_p] = *(span+m_p) - u(0,v);
645 
646  // Compute the first derivatives (using ndu[] and left+right)
647  right[0] = right[1]+left[m_p] ;
648  result(0 , v) = - static_cast<T>(m_p) * ndu[0] / right[0] ;
649  for(int r = 1; r < m_p; r++)
650  {
651  // Compute knot difference r of distance m_p (overwrite right[])
652  right[r] = right[r+1]+left[m_p-r] ;
653  result(r, v) = static_cast<T>(m_p) * ( ndu[r-1] / right[r-1] - ndu[r] / right[r] );
654  }
655  result(m_p, v) = static_cast<T>(m_p) * ndu[pk] / right[pk];
656 
657  }// end for all columns v
658 }
659 
660 template <class T> inline
662  gsMatrix<T>& result ) const
663 {
664  std::vector<gsMatrix<T> > ev;
665  this->evalAllDers_into(u, 2, ev);
666  result.swap(ev[2]);
667 }
668 
669 template <class T> inline
671  const gsMatrix<T> & u,
672  gsMatrix<T>& result ) const
673 {
674  // \todo Redo an efficient implementation p. 76, Alg. A2.5 Nurbs book
675  result.resize(1, u.cols() );
676  gsMatrix<T> tmp;
678 
679  for (index_t j = 0; j < u.cols(); ++j)
680  {
681  const index_t first = firstActive(u(0,j));
682  if ( (i>= first) && (i<= first + m_p) )
683  result(0,j) = tmp(i-first,j);
684  else
685  result(0,j) = (T)(0.0);
686  }
687 }
688 
689 template <class T> inline
690 void
692  const gsMatrix<T> & u,
693  int n,
694  gsMatrix<T>& result) const
695 {
696  GISMO_ASSERT( u.rows() == 1 , "gsBSplineBasis accepts points with one coordinate.");
697  // Notation from the NURBS book:
698  // p - degree
699  // U = {u[0],...,u[m]} the knot vector
700  // i - id of the basis function (hopefully the same ;)
701  // u - parameter (where to evaluate)
702 
703  T saved, Uleft, Uright, temp;
704  const unsigned int p1 = m_p + 1;
705  // Note that N[i][k] = N[ i*p1 + k ].
706  STACK_ARRAY(T, N, p1*p1);
707  STACK_ARRAY(T, ND, p1);
708 
709  result.setZero(n + 1, u.cols());
710  n = ( n>m_p ? m_p : n );
711 
712  for( index_t s = 0; s < u.cols(); s++ )
713  {
714  // Periodic basis
715  if( (int)(i) <= m_periodic ) // Basis is periodic and i could be among the crossing functions.
716  {
717  gsMatrix<T> supp = support(i);
718  if( u(0,s) < supp(0) || u(0,s) > supp(1)) // u is outside the support of B_i
719  i += size(); // we use the basis function ignored ny the periodic construction
720  }
721 
722  if( u(0,s) < m_knots[i] || u(0,s) >= m_knots[i+m_p+1]) // Local property
723  if( u( 0,s ) != m_knots[m_knots.size()-m_p-1] )
724  continue; //zeros
725 
726  //bspline::deBoorTriangle( u(0,s), m_knots.begin() + i, m_p, N );
727  if ( u(0,s) == m_knots[m_knots.size()-m_p-1] )
728  { // Initialize zeroth-degree functions
729  for( int j = 0; j <= m_p; j++ )
730  N[ j*p1 ] = (T)( u(0,s) > m_knots[i+j] && u(0,s) <= m_knots[i+j+1] );
731  }
732  else // not at right boundary
733  {
734  for( int j = 0; j <= m_p; j++ )
735  N[ j*p1 ] = (T)( u(0,s) >= m_knots[i+j] && u(0,s) < m_knots[i+j+1] );
736  }
737 
738  for( int k = 1; k <= m_p; k++ ) // Compute full triangular table
739  {
740  saved = (N[(k-1)] == 0 ? (T)(0) :
741  ((u(0,s)-m_knots[i])*N[ k-1 ])/(m_knots[i+k]-m_knots[i]) );
742 
743  for( int j = 0; j < m_p-k+1; j++)
744  {
745  Uleft = m_knots[i+j+1];
746  Uright = m_knots[i+j+k+1];
747  if( N[ (j+1)*p1 + (k-1) ] == 0 )
748  {
749  N[ j*p1 + k ] = saved;
750  saved = 0;
751  }
752  else
753  {
754  temp = N[ (j+1)*p1 + (k-1) ]/(Uright-Uleft);
755  N[ j*p1 + k ] = saved + (Uright-u(0,s))*temp;
756  saved = (u(0,s)-Uleft)*temp;
757  }
758  }
759  }
760 
761  result(0,s) = N[ m_p ]; // The function value
762 
763  for( int k = 1; k <= n; k++ ) // Compute the derivatives
764  {
765  for( int j = 0; j <= k; j++ ) // Load appropriate column
766  ND[j] = N[ j*p1 + (m_p-k) ];
767  for( int jj = 1; jj <= k; jj++ ) // Compute table of width k
768  {
769  if( ND[0] == 0 )
770  saved = 0;
771  else
772  saved = ND[0]/(m_knots[ i+m_p-k+jj ] - m_knots[i]);
773  for( int j = 0; j < k-jj+1; j++ )
774  {
775  Uleft = m_knots[i+j+1];
776  Uright = m_knots[i + m_p-k+jj + j+1];
777  if( ND[j+1] == 0 )
778  {
779  ND[j] = static_cast<T>(m_p-k+jj)*saved;
780  saved = 0;
781  }
782  else
783  {
784  temp = ND[j+1]/(Uright - Uleft);
785  ND[j] = static_cast<T>(m_p-k+jj)*(saved - temp);
786  saved = temp;
787  }
788  }
789  }
790  result(k,s) = ND[0]; // k-th derivative
791  }
792  }
793 }
794 
795 template <class T> inline
796 void gsTensorBSplineBasis<1,T>::deriv_into(const gsMatrix<T> & u, const gsMatrix<T> & coefs, gsMatrix<T>& result ) const
797 {
798  // TO DO specialized computation for gsBSplineBasis
799  if( m_periodic == 0 )
800  gsBasis<T>::derivFunc_into(u, coefs, result);
801  else
802  gsBasis<T>::derivFunc_into(u, perCoefs(coefs), result);
803 }
804 
805 template <class T> inline
806 void gsTensorBSplineBasis<1,T>::deriv2_into(const gsMatrix<T> & u, const gsMatrix<T> & coefs, gsMatrix<T>& result ) const
807 {
808  // TO DO specialized computation for gsBSplineBasis
809  if( m_periodic == 0 )
810  gsBasis<T>::deriv2Func_into(u, coefs, result);
811  else
812  gsBasis<T>::deriv2Func_into(u, perCoefs(coefs), result);
813 }
814 
815 template <class T> inline
817 {
818  // \todo Redo an efficient implementation p. 76, Alg. A2.5 Nurbs book
819  result.resize(1, u.cols() );
820  gsMatrix<T> tmp;
822 
823  for (index_t j = 0; j < u.cols(); ++j)
824  {
825  const index_t first = firstActive(u(0,j));
826  if ( (i>= first) && (i<= first + m_p) )
827  result(0,j) = tmp(i-first,j);
828  else
829  result(0,j) = (T)(0.0);
830  }
831 }
832 
833 template <class T> inline
835 {
836  std::vector<gsMatrix<T> > ev;
837  this->evalAllDers_into(u, 2, ev);
838  return ev[2].colwise().sum();
839 }
840 
841 template <class T>
842 typename gsBasis<T>::uPtr
844 {
845  typename Self_t::uPtr ptr1 = memory::convert_ptr<Self_t>(other.clone());
846 
847  if ( ptr1 )
848  return typename gsBasis<T>::uPtr(new gsTensorBSplineBasis<2,T>( ptr1.release(), this->clone().release() ));
849  else
850  {
851  gsWarn<<"gsTensorBSplineBasis::tensorize: Invalid basis "<< other <<"\n";
852  return typename gsBasis<T>::uPtr();
853  }
854 }
855 
856 template <class T>
857 memory::unique_ptr<gsGeometry<T> > gsBSplineBasis<T>::makeGeometry( gsMatrix<T> coefs ) const
858 {
859  return typename gsGeometry<T>::uPtr(new GeometryType(*this, give(coefs)));
860 }
861 
862 template <class T>
864 evalAllDers_into(const gsMatrix<T> & u, int n,
865  std::vector<gsMatrix<T> >& result,
866  bool sameElement) const
867 {
868  // TO DO : Use less memory proportionally to n
869  // Only last n+1 columns and last n rows of ndu are needed
870  // Also a's size is proportional to n
871  GISMO_ASSERT( u.rows() == 1 , "gsBSplineBasis accepts points with one coordinate.");
872 
873  const int p1 = m_p + 1; // degree plus one
874 
875  STACK_ARRAY(T, ndu, p1 * p1 );
876  STACK_ARRAY(T, left, p1);
877  STACK_ARRAY(T, right, p1);
878  STACK_ARRAY(T, a, 2 * p1);
879 
880  result.resize(n+1);
881  for(int k=0; k<=n; k++)
882  result[k].resize(m_p + 1, u.cols());
883 
884 #if FALSE
885 
886  const int pn = m_p - n;
887  unsigned span;
888 
889  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
890  {
891  if (!sameElement || 0==v)
892  {
893 
894  // Check if the point is in the domain
895  if ( ! inDomain( u(0,v) ) )
896  {
897  // gsWarn<< "Point "<< u(0,v) <<" not in the BSpline domain.\n";
898  for(int k=0; k<=n; k++)
899  result[k].col(v).setZero();
900  continue;
901  }
902 
903  // Run evaluation algorithm and keep the function values triangle & the knot differences
904  span = m_knots.findspan( u(0,v) ) ; // Get span of absissae.
905  }
906 
907  for(int j=1; j<= m_p; j++) // For all degrees ( ndu column)
908  {
909  // Compute knot splits
910  left[j] = u(0,v) - m_knots[span+1-j];
911  right[j] = m_knots[span+j] - u(0,v);
912  }
913 
914  ndu[0] = (T)(1) ; // 0-th degree function value
915  T saved = (T)(0) ;
916  // Compute Basis functions of degree m_p-n ( ndu[] )
917  for(int r=0; r<pn ; r++) // For all (except the last) basis functions of degree m_p-n
918  {
919  const T temp = ndu[r*p1 + pn -1] / ( right[r+1] + left[pn-r] ) ;
920  ndu[r*p1 + pn] = saved + right[r+1] * temp ;// r-th function value of degree j
921  saved = left[pn-r] * temp ;
922  }
923  ndu[pn*p1 + pn] = saved ;
924 
925  // Compute n-th derivative and continue to n-1 ... 0
926 
927  for(int r=0; r<pn ; r++) // For all (except the last) basis functions of degree j ( ndu row)
928  {
929  // Strictly lower triangular part: Knot differences of distance j
930  ndu[j*p1 + r] = right[r+1]+left[j-r] ;
931  const T temp = ndu[r*p1 + j-1] / ndu[j*p1 + r] ;
932  // Upper triangular part: Basis functions of degree j
933  ndu[r*p1 + j] = saved + right[r+1] * temp ;// r-th function value of degree j
934  saved = left[j-r] * temp ;
935  }
936  // Diagonal: j-th (last) function value of degree j
937  ndu[j*p1 + j] = saved ;
938  }
939 
940 #endif
941 
942  typename KnotVectorType::iterator span;
943 
944  for (index_t v = 0; v < u.cols(); ++v) // for all columns of u
945  {
946 
947  if (!sameElement || 0==v)
948  {
949  // Check if the point is in the domain
950  if ( ! inDomain( u(0,v) ) )
951  {
952  //gsDebug<< "Point "<< u(0,v) <<" not in the BSpline domain ["
953  // << *(m_knots.begin()+m_p)<< ", "<<*(m_knots.end()-m_p-1)<<"].\n";
954  for(int k=0; k<=n; k++)
955  result[k].col(v).setZero();
956  continue;
957  }
958 
959  // Run evaluation algorithm and keep the function values triangle & the knot differences
960  span = m_knots.iFind( u(0,v) );
961  }
962 
963  ndu[0] = (T)(1) ; // 0-th degree function value
964  for(int j=1; j<= m_p; j++) // For all degrees ( ndu column)
965  {
966  // Compute knot splits
967  left[j] = u(0,v) - *(span+1-j);
968  right[j] = *(span+j) - u(0,v);
969 
970  T saved = (T)(0) ;
971 
972  for(int r=0; r<j ; r++) // For all (except the last) basis functions of degree j ( ndu row)
973  {
974  // Strictly lower triangular part: Knot differences of distance j
975  ndu[j*p1 + r] = right[r+1]+left[j-r] ;
976  const T temp = ndu[r*p1 + j-1] / ndu[j*p1 + r] ;
977  // Upper triangular part: Basis functions of degree j
978  ndu[r*p1 + j] = saved + right[r+1] * temp ;// r-th function value of degree j
979  saved = left[j-r] * temp ;
980  }
981  // Diagonal: j-th (last) function value of degree j
982  ndu[j*p1 + j] = saved ;
983  }
984 
985  // Assign 0-derivative equal to function values
986  //result.front().block(0,v, p1,1) = ndu.col(m_p);
987  for (int j=0; j <= m_p ; ++j )
988  result.front()(j,v) = ndu[j*p1 + m_p];
989 
990  // Compute the derivatives
991  for(int r = 0; r <= m_p; r++)
992  {
993  // alternate rows in array a
994  T* a1 = &a[0];
995  T* a2 = &a[p1];
996 
997  a1[0] = (T)(1) ;
998 
999  // Compute the k-th derivative of the r-th basis function
1000  for(int k=1; k<=n; k++)
1001  {
1002  int rk,pk,j1,j2 ;
1003  T d(0) ;
1004  rk = r-k ; pk = m_p-k ;
1005 
1006  if(r >= k)
1007  {
1008  a2[0] = a1[0] / ndu[ (pk+1)*p1 + rk] ;
1009  d = a2[0] * ndu[rk*p1 + pk] ;
1010  }
1011 
1012  j1 = ( rk >= -1 ? 1 : -rk );
1013  j2 = ( r-1 <= pk ? k-1 : m_p - r );
1014 
1015  for(int j = j1; j <= j2; j++)
1016  {
1017  a2[j] = (a1[j] - a1[j-1]) / ndu[(pk+1)*p1 + rk+j] ;
1018  d += a2[j] * ndu[(rk+j)*p1 + pk] ;
1019  }
1020 
1021  if(r <= pk)
1022  {
1023  a2[k] = -a1[k-1] / ndu[(pk+1)*p1 + r] ;
1024  d += a2[k] * ndu[r*p1 + pk] ;
1025  }
1026 
1027  result[k](r, v) = d;
1028 
1029  std::swap(a1, a2); // Switch rows
1030  }
1031  }
1032  }// end for all columns v
1033 
1034  // Multiply through by the factor factorial(m_p)/factorial(m_p-k)
1035  int r = m_p ;
1036  for(int k=1; k<=n; k++)
1037  {
1038  result[k].array() *= (T)(r) ;
1039  r *= m_p - k ;
1040  }
1041 }
1042 
1043 
1044 template <class T>
1045 void gsTensorBSplineBasis<1,T>::refine_withCoefs(gsMatrix<T>& coefs, const std::vector<T>& knots)
1046 {
1047  // Probably does not work with periodic basis. We would need to shift the knots in the ghost areas by the active length,
1048  // sort the knot vector, swap the coefs accordingly, call this with perCoefs (or coefs?) and stretch outer knots.
1049  gsBoehmRefine(this->knots(), coefs, m_p, knots.begin(), knots.end());
1050 }
1051 
1052 
1053 template <class T>
1055 {
1056  // See remark about periodic basis in refine_withCoefs, please.
1057  gsSparseRows<T> trans;
1058  trans.setIdentity( this->size() );
1059  gsBoehmRefine(this->knots(), trans, m_p, knots.begin(), knots.end());
1060  trans.toSparseMatrix( transfer );
1061 }
1062 
1063 
1064 template <class T>
1065 void gsTensorBSplineBasis<1,T>::uniformRefine_withCoefs(gsMatrix<T>& coefs, int numKnots, int mul, int )
1066 {
1067  // See remark about periodic basis in refine_withCoefs, please.
1068  std::vector<T> newKnots;
1069  this->knots().getUniformRefinementKnots(numKnots, newKnots,mul);
1070  this->refine_withCoefs(coefs, newKnots);
1071 }
1072 
1073 
1074 template <class T>
1076 {
1077  // See remark about periodic basis in refine_withCoefs, please.
1078  std::vector<T> newKnots;
1079  this->knots().getUniformRefinementKnots(numKnots, newKnots,mul);
1080  this->refine_withTransfer(transfer, newKnots);
1081 }
1082 
1083 template <class T>
1085 {
1086  // Simple implementation: coarsen and refine again.
1087  // Could be done more efficiently if needed.
1088  std::vector<T> removedKnots = m_knots.coarsen(numKnots);
1089  this->clone()->refine_withTransfer( transfer, removedKnots );
1090 }
1091 
1092 template <class T>
1094 {
1095  GISMO_ASSERT(c<3,"Invalid corner for 1D basis.");
1096  return ( c == 1 ? 0 : this->size()-1);
1097 }
1098 
1099 template <class T>
1100 std::ostream & gsTensorBSplineBasis<1,T>::print(std::ostream &os) const
1101 {
1102  os << "BSplineBasis: deg=" <<degree()
1103  << ", size="<< size() << ", knot vector:\n";
1104  os << this->knots();
1105  if( m_periodic > 0 )
1106  os << ",\n m_periodic= " << m_periodic;
1107  return os;
1108 }
1109 template <class T>
1111 {
1112  std::stringstream os;
1113  os << "BSplineBasis: deg=" <<degree()
1114  << ", size="<< size() << ", knot vector:\n";
1115  os << this->knots().detail();
1116  if( m_periodic > 0 )
1117  os << ",\n m_periodic= " << m_periodic;
1118  return os.str();
1119 }
1120 
1121 
1122 template<class T>
1124 {
1125  int borderKnotMult = this->borderKnotMult(); // Otherwise complains that error: 'borderKnotMult' cannot be used as a function
1126  std::vector<T> newKnots(m_knots.begin(), m_knots.end());
1127  for( int i = 0; i <= m_p - borderKnotMult; i++ )
1128  {
1129  newKnots[i] = newKnots[ newKnots.size() - 2 * m_p - 2 + i + borderKnotMult ] - _activeLength();
1130  newKnots[ newKnots.size() - i - 1 ] = newKnots[ 2 * m_p - borderKnotMult + 1 - i ] + _activeLength();
1131  }
1132  m_knots=KnotVectorType(m_p, newKnots.begin(), newKnots.end());
1133 }
1134 
1135 template <class T>
1137 {
1138  gsWarn << "gsBSplineBasis: Converting basis to periodic"<< *this<< "\n";
1139 
1140  int borderKnotMult = this->borderKnotMult();
1141  if( m_knots.size() < static_cast<size_t>(2 * m_p + 2) ) // We need at least one internal knot span.
1142  {
1143  gsWarn << "Your basis cannot be changed into periodic:\n Not enough internal control points for our construction of periodic basis.\n";
1144  m_periodic = 0;
1145  }
1146 
1147  else if( isClamped() )
1148  {
1149  // Clamped knots are OK, if BOTH of them are clamped.
1150  _stretchEndKnots();
1151  m_periodic = m_p + 2 - borderKnotMult; // +2 and not +1 because borderKnotMult has been computed before stretching
1152  }
1153 
1154  else
1155  {
1156  m_periodic = m_p + 1 - borderKnotMult; // We suppose it will be possible to convert the basis to periodic.
1157 
1158  T i1, i2;
1159  for( int i = 2; i <= 2 * m_p + 1 - borderKnotMult; i ++ )
1160  {
1161  // Compare the knot intervals in the beginning with the corresponding knot intervals at the end.
1162  i1 = m_knots[i] - m_knots[i-1];
1163  i2 = m_knots[m_knots.size() - (2*m_p) + i - 2 + borderKnotMult] - m_knots[m_knots.size() - (2*m_p) + i - 3 + borderKnotMult];
1164  if( math::abs( i1 - i2 ) > (T)(1e-8) )
1165  {
1166  gsWarn << "Your basis cannot be changed into periodic:\n Trouble stretching interior knots.\n";
1167  //std::cerr << "i: " << i << ", i1: " << i1 << ", i2: " << i2 << std::endl;
1168  m_periodic = 0;
1169  return;
1170  }
1171  }
1172  }
1173 }
1174 
1175 template <class T>
1177 {
1178  // Terminology: Blue knots are the m_p + 1st from the beginning and from the end of knot vector.
1179  if( isClamped() )
1180  return m_p + 1;
1181 
1182  int multiFirst = 0;
1183  int multiLast = 0;
1184  int lastBlueId = m_knots.size() - m_p - 1; // Index of the m_p + 1st knot from the end.
1185 
1186  for( int i = 0; i < m_p; i++ )
1187  {
1188  if( m_knots[m_p - i] == m_knots[m_p])
1189  multiFirst++;
1190  else
1191  break;
1192  }
1193 
1194  for( int i = 0; i < m_p; i++ )
1195  {
1196  if( m_knots[lastBlueId + i] == m_knots[ lastBlueId ])
1197  multiLast++;
1198  else
1199  break;
1200  }
1201 
1202  if( multiFirst == multiLast )
1203  return multiLast;
1204  else
1205  {
1206  gsWarn << "Different multiplicity of the blue knots.\n";
1207  return 0;
1208  }
1209 
1210 }
1211 
1212 template <class T>
1214 {
1215  GISMO_ASSERT( isClamped(), "_stretchEndKnots() is intended for use only to knot vectors with clamped end knots.");
1216  T curFirst=m_knots[0];
1217  T curLast=m_knots[m_knots.size() - 1];
1218  m_knots.remove(curFirst); m_knots.insert(m_knots[m_knots.size() - m_p - 2] - _activeLength());
1219  m_knots.remove(curLast); m_knots.insert(m_knots[m_p + 1] + _activeLength());
1220 }
1221 
1222 /* ********************************************** */
1223 
1224 template <class T>
1226 {
1227  GISMO_UNUSED(i);
1228  GISMO_ASSERT(i==0,"gsBSplineBasis has only one component");
1229  return const_cast<gsBSplineBasis&>(*this);
1230 }
1231 
1232 template <class T>
1234 {
1235  GISMO_UNUSED(i);
1236  GISMO_ASSERT(i==0,"gsBSplineBasis has only one component");
1237  return const_cast<gsBSplineBasis&>(*this);
1238 }
1239 
1240 
1241 namespace internal
1242 {
1243 
1245 template<class T>
1246 class gsXml< gsBSplineBasis<T> >
1247 {
1248 private:
1249  gsXml() { }
1250 public:
1251  GSXML_COMMON_FUNCTIONS(gsBSplineBasis<T>);
1252  static std::string tag () { return "Basis"; }
1253  static std::string type () { return "BSplineBasis"; }
1254 
1255  static gsBSplineBasis<T> * get (gsXmlNode * node)
1256  {
1257  GISMO_ASSERT( !strcmp( node->name(),"Basis"), "Wrong tag." );
1258 
1259  if (!strcmp(node->first_attribute("type")->value(),"TensorBSplineBasis1"))
1260  node = node->first_node("BSplineBasis");
1261 
1262  GISMO_ASSERT( !strcmp(node->first_attribute("type")->value(),"BSplineBasis"),
1263  "Wrong XML type, expected BSplineBasis." );
1264 
1265  gsXmlNode * tmp = node->first_node("KnotVector");
1266  // if type: == Plain, == Compact ..
1267  GISMO_ASSERT(tmp, "Did not find a KnotVector tag in the Xml file.");
1268  gsKnotVector<T> kv;
1269  gsXml<gsKnotVector<T> >::get_into(tmp, kv);
1270 
1271  return new gsBSplineBasis<T>( kv );
1272  }
1273 
1274  static gsXmlNode * put (const gsBSplineBasis<T> & obj,
1275  gsXmlTree & data)
1276  {
1277  // Add a new node for obj (without data)
1278  gsXmlNode* bs_node = internal::makeNode("Basis" , data);
1279  bs_node->append_attribute( makeAttribute("type", "BSplineBasis", data) );
1280 
1281  // Write the knot vector
1282  gsXmlNode* tmp =
1283  internal::gsXml<gsKnotVector<T> >::put(obj.knots(), data );
1284  bs_node->append_node(tmp);
1285 
1286  // All set, return the BSPlineBasis node
1287  return bs_node;
1288  }
1289 
1290 };
1291 
1292 
1293 }// namespace internal
1294 
1295 } // namespace gismo
short_t degree(short_t i) const
Returns the degree of the basis wrt variable i.
Definition: gsTensorBasis.h:465
void evalSingle_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the i-th basis function at points u into result.
Definition: gsTensorBasis.hpp:410
Class defining a dummy basis of constant functions. This is used for compatibility reasons...
Definition: gsConstantBasis.h:34
virtual void evalAllDersSingle_into(index_t i, const gsMatrix< T > &u, int n, gsMatrix< T > &result) const
Evaluate the basis function i and its derivatives up to order n at points u into result.
Definition: gsBasis.hpp:471
Implementation of deBoor and tensor deBoor algorithm.
index_t size() const
Returns the number of elements in the basis.
Definition: gsTensorBasis.h:108
void active_into(const gsMatrix< T > &u, gsMatrix< index_t > &result) const
Returns the indices of active basis functions at points u, as a list of indices, in result...
Definition: gsTensorBSplineBasis.hpp:166
virtual void deriv2Single_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the (partial) derivatives of the i-th basis function at points u into result.
Definition: gsTensorBasis.hpp:454
void uniformCoarsen_withTransfer(gsSparseMatrix< T, RowMajor > &transfer, int numKnots=1)
Coarsen the basis uniformly and produce a sparse matrix which maps coarse coefficient vectors to refi...
Definition: gsTensorBasis.hpp:876
#define short_t
Definition: gsConfig.h:35
void evalDeg3Basis(const T &u, const KnotIterator knot, MatrixType &result)
Evaluation for degree 3 B-spline basis.
Definition: gsBSplineAlgorithms.h:94
A tensor product of d B-spline functions, with arbitrary target dimension.
Definition: gsTensorBSpline.h:44
virtual void evalDerSingle_into(index_t i, const gsMatrix< T > &u, int n, gsMatrix< T > &result) const
Evaluate the (partial) derivative(s) of order n the i-th basis function at points u into result...
Definition: gsBasis.hpp:476
void evalDeg2Basis(const T &u, const KnotIterator knot, gsEigen::MatrixBase< Derived > const &result)
Evaluation for degree 2 B-spline basis.
Definition: gsBSplineAlgorithms.h:85
Boehm&#39;s algorithm for knot insertion.
void gsBoehmRefine(KnotVectorType &knots, Mat &coefs, int p, ValIt valBegin, ValIt valEnd, bool update_knots=true)
Definition: gsBoehm.hpp:163
virtual void connectivity(const gsMatrix< T > &nodes, gsMesh< T > &mesh) const
Definition: gsTensorBasis.hpp:163
memory::unique_ptr< gsGeometry< T > > makeGeometry(gsMatrix< T > coefs) const
Create a gsGeometry of proper type for this basis with the given coefficient matrix.
Definition: gsBSplineBasis.hpp:857
virtual void derivFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluate the derivatives of the function described by coefs at points u.
Definition: gsBasis.hpp:84
S give(S &x)
Definition: gsMemory.h:266
#define index_t
Definition: gsConfig.h:32
size_t elementIndex(const gsVector< T > &u) const
Returns an index for the element which contains point u.
Definition: gsTensorBasis.h:141
void gsDeboor(const gsMatrix< T > &u, const KnotVectorType &knots, int deg, const gsMatrix< T > &coefs, gsMatrix< T > &result)
Definition: gsDeboor.hpp:30
std::ostream & print(std::ostream &os) const
Prints the object as a string.
Definition: gsTensorBSplineBasis.h:223
A tensor product B-spline basis.
Definition: gsTensorBSplineBasis.h:36
#define GISMO_ASSERT(cond, message)
Definition: gsDebug.h:89
A univariate B-spline basis.
Definition: gsBSplineBasis.h:694
gsMatrix< T > elementInSupportOf(index_t j) const
Returns (the coordinates of) an element in the support of basis function j.
Definition: gsTensorBasis.hpp:1066
Implementation of common algorithms for B-splines.
virtual void eval_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates nonzero basis functions at point u into result.
Definition: gsTensorBasis.hpp:502
Class Representing a triangle mesh with 3D vertices.
Definition: gsMesh.h:31
virtual void evalAllDers_into(const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const
Evaluate the nonzero functions and their derivatives up to order n at points u into result...
Definition: gsTensorBasis.hpp:634
#define gsWarn
Definition: gsDebug.h:50
void refine_withCoefs(gsMatrix< T > &coefs, const std::vector< std::vector< T > > &refineKnots)
Takes a vector of coordinate wise knot values and inserts these values to the basis.
Definition: gsTensorBSplineBasis.hpp:83
virtual void derivSingle_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates the (partial) derivatives of the i-th basis function at points u into result.
Definition: gsTensorBasis.hpp:429
gsXmlAttribute * makeAttribute(const std::string &name, const std::string &value, gsXmlTree &data)
Helper to allocate XML attribute.
Definition: gsXml.cpp:37
bool isActive(const index_t i, const gsVector< T > &u) const
Returns true if there the point u with non-zero value or derivatives when evaluated at the basis func...
Definition: gsTensorBasis.hpp:239
gsXmlNode * makeNode(const std::string &name, gsXmlTree &data)
Helper to allocate XML node.
Definition: gsXml.cpp:54
Struct which represents a certain side of a box.
Definition: gsBoundary.h:84
void refine_withTransfer(gsSparseMatrix< T, RowMajor > &transfer, const std::vector< std::vector< T > > &refineKnots)
Takes a vector of coordinate wise knot values and inserts these values to the basis.
Definition: gsTensorBSplineBasis.hpp:66
gsMatrix< T > support() const
Returns (a bounding box for) the domain of the whole basis.
Definition: gsTensorBasis.hpp:390
void evalBasis(T u, KnotIterator knot, int deg, gsEigen::MatrixBase< Derived > const &result)
Definition: gsBSplineAlgorithms.h:34
Provides declaration of the Mesh class.
uPtr clone()
Clone methode. Produceds a deep copy inside a uPtr.
memory::unique_ptr< gsGeometry > uPtr
Unique pointer for gsGeometry.
Definition: gsGeometry.h:100
Self_t & component(short_t i)
For a tensor product basis, return the 1-d basis for the i-th parameter component.
Definition: gsBSplineBasis.hpp:1225
void deBoorTriangle(T u, KnotIterator knot, int deg, T N[])
Definition: gsBSplineAlgorithms.h:107
Represents a B-spline curve/function with one parameter.
gsMatrix< T > perCoefs(const gsMatrix< T > &originalCoefs, short_t dir) const
Sets the coefficients so that the resulting TensorBSpline is periodic in direction dir...
Definition: gsTensorBSplineBasis.h:447
memory::unique_ptr< gsBasis > uPtr
Unique pointer for gsBasis.
Definition: gsBasis.h:89
virtual gsBasis::uPtr tensorize(const gsBasis &other) const
Return a tensor basis of this and other.
Definition: gsBasis.hpp:488
virtual void deriv_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates the first partial derivatives of the nonzero basis function.
Definition: gsTensorBasis.hpp:594
memory::unique_ptr< Self_t > uPtr
Smart pointer for gsTensorBSplineBasis.
Definition: gsTensorBSplineBasis.h:69
gsMatrix< index_t > boundaryOffset(boxSide const &s, index_t offset) const
Definition: gsTensorBasis.hpp:304
virtual void deriv2_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the second derivatives of all active basis function at points u.
Definition: gsTensorBasis.hpp:731
#define GISMO_UNUSED(x)
Definition: gsDebug.h:112
virtual std::string detail() const
Prints the object as a string with extended details.
Definition: gsBasis.h:727
gsMatrix< index_t > allBoundary() const
Definition: gsTensorBasis.hpp:283
#define GISMO_ERROR(message)
Definition: gsDebug.h:118
patchSide & second()
second, returns the second patchSide of this interface
Definition: gsBoundary.h:782
EIGEN_STRONG_INLINE abs_expr< E > abs(const E &u)
Absolute value.
Definition: gsExpressions.h:4488
void uniformRefine_withCoefs(gsMatrix< T > &coefs, int numKnots=1, int mul=1, int dir=-1)
Definition: gsTensorBasis.hpp:824
Struct which represents an interface between two patches.
Definition: gsBoundary.h:649
void uniformRefine_withTransfer(gsSparseMatrix< T, RowMajor > &transfer, int numKnots=1, int mul=1)
Definition: gsTensorBasis.hpp:861
A specialized sparse matrix class which stores each row as a separate sparse vector.
Definition: gsSparseRows.hpp:24
virtual void evalFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluate the function described by coefs at points u, i.e., evaluates a linear combination of coefs x...
Definition: gsBasis.hpp:37
Struct which represents a certain corner of a hyper-cube.
Definition: gsBoundary.h:291
Provides declaration of input/output XML utilities struct.
virtual gsMatrix< T > laplacian(const gsMatrix< T > &u) const
Compute the Laplacian of all nonzero basis functions at points u.
Definition: gsBasis.hpp:184
A basis represents a family of scalar basis functions defined over a common parameter domain...
Definition: gsBasis.h:78
virtual void deriv2Func_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluates the second derivatives of the function described by coefs at points u.
Definition: gsBasis.hpp:101
Provides declaration of TensorBSplineBasis abstract interface.
patchSide & first()
first, returns the first patchSide of this interface
Definition: gsBoundary.h:776
void evalDeg1Basis(const T &u, const KnotIterator knot, gsEigen::MatrixBase< Derived > const &result)
Evaluation for degree 1 B-spline basis.
Definition: gsBSplineAlgorithms.h:72