G+Smo  23.12.0
Geometry + Simulation Modules
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gsFunctionSet< T > Class Template Referenceabstract

Detailed Description

template<typename T>
class gismo::gsFunctionSet< T >

Interface for the set of functions defined on a domain (the total number of functions in the set equals to \(S\) )

All G+Smo objects that evaluate function[s] derive from this object. Examples are gsMatrix, gsFunction and gsGeometry.

The available evaluation procedures are:

Name of procedure Evaluate what
eval (points) value
deriv (points) first derivative(s)
deriv2 (points) second derivative(s)

There are two classes of functions for evaluation that differ in the arguments and in the returned values. The argument can either be

1) a matrix;
2) a gsTransform object representing the parametrization of the domain.

In the first case the the matrix specifies a set of points of a size $N$ (one point per column) and it is the caller responsibility to distinguish between functions defined on the physical and on the parametric domain. In the second case the evaluator will fetch the appropriate points depending on whether it is defined on the parametric or in the physical space. In complex situations: in particular when the physical domain of a function is the parametric domain of another the automatic mechanism is not guaranteed to work.

The result is a matrix in which the i-th column contains the requested values or derivatives at the i-th point, i.e. the point whose coordinate are the i-th column of the input matrix or of the matrix supplied by the gsTransform object. On each column the data is grouped in blocks corresponding to different functions, so that that if the requested evaluation contains s values \( v_1, \ldots, v_s \) for each pair \( (f_i, p_j) \) , \( i = 1, \ldots, S \), \( j = 1, \ldots, N \) , of (function, point) the output matrix looks like

\[ \left[ \begin{array}{ccccc} v_1(f_1,p_1) & v_1(f_1,p_2) & \ldots & v_1(f_1,p_N)\\ v_2(f_1,p_1) & v_2(f_1,p_2) & \ldots & v_2(f_1,p_N)\\ \vdots & \vdots & & \vdots\\ v_s(f_1,p_1) & v_s(f_1,p_2) & \ldots & v_s(f_1,p_N)\\ v_1(f_2,p_1) & v_1(f_2,p_2) & \ldots & v_1(f_2,p_N)\\ \vdots & \vdots & & \vdots\\ v_s(f_S,p_1) & v_s(f_S,p_2) & \ldots & v_s(f_S,p_N) \end{array} \right] \]

Any implementation of the gsFunctionSet interface must:

1) overload the virtual function int size() that returns the number of functions in the set;

2) overload the needed evaluation functions with gsMatrix argument: eval_into, deriv_into, deriv2_into; the one that are not implemented will fail at runtime printing, which function need implementing to the console

and possibly:

3) write optimized versions of div, curl, laplacian, and ect. evaluation. By default they are computed by evaluating the derivatives and applying the definition.

Template Parameters
Ttype for real numbers
+ Inheritance diagram for gsFunctionSet< T >:

Public Types

typedef memory::shared_ptr
< gsFunctionSet
Ptr
 Shared pointer for gsFunctionSet.
 
typedef memory::unique_ptr
< gsFunctionSet
uPtr
 Unique pointer for gsFunctionSet.
 

Public Member Functions

gsMatrix< index_tactive (const gsMatrix< T > &u) const
 Returns the indices of active (nonzero) functions at points u, as a list of indices. More...
 
virtual void active_into (const gsMatrix< T > &u, gsMatrix< index_t > &result) const
 Indices of active (non-zero) function(s) for each point. More...
 
const gsBasis< T > & basis (const index_t k) const
 Helper which casts and returns the k-th piece of this function set as a gsBasis.
 
uPtr clone ()
 Clone methode. Produceds a deep copy inside a uPtr.
 
virtual void compute (const gsMatrix< T > &in, gsFuncData< T > &out) const
 Computes function data. More...
 
gsMatrix< T > deriv (const gsMatrix< T > &u) const
 Evaluate the derivatives,. More...
 
gsMatrix< T > deriv2 (const gsMatrix< T > &u) const
 Evaluates the second derivatives of active (i.e., non-zero) basis at points u. More...
 
virtual void deriv2_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Second derivatives. More...
 
virtual void deriv_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 First derivatives. More...
 
virtual short_t domainDim () const =0
 Dimension of the (source) domain. More...
 
gsMatrix< T > eval (const gsMatrix< T > &u) const
 Evaluate the function,. More...
 
virtual void eval_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Evaluates the function(s). More...
 
std::vector< gsMatrix< T > > evalAllDers (const gsMatrix< T > &u, int n) const
 Evaluate all derivatives upto order n,. More...
 
virtual void evalAllDers_into (const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result) const
 Evaluate the nonzero functions and their derivatives up to order n. If n is -1 then no computation is performed.
 
const gsFunction< T > & function (const index_t k) const
 Helper which casts and returns the k-th piece of this function set as a gsFunction.
 
virtual index_t nPieces () const
 Number of pieces in the domain of definition.
 
virtual const gsFunctionSetpiece (const index_t) const
 Returns the piece(s) of the function(s) at subdomain k.
 
virtual std::ostream & print (std::ostream &os) const
 Prints the object as a string.
 
virtual index_t size () const
 size More...
 
virtual short_t targetDim () const
 Dimension of the target space. More...
 

Member Function Documentation

gsMatrix<index_t> active ( const gsMatrix< T > &  u) const
inline

Returns the indices of active (nonzero) functions at points u, as a list of indices.

See Also
active_into()
void active_into ( const gsMatrix< T > &  u,
gsMatrix< index_t > &  result 
) const
virtual

Indices of active (non-zero) function(s) for each point.

The columns are sorted in increasing order, if on a point there are less active then the number of rows in the result matrix (some other point has more actives) then the rest of the column is filled with 0s.

Parameters
u
result

Reimplemented in gsHTensorBasis< d, T >, gsBasis< T >, gsBasis< Scalar >, gsBasis< real_t >, gsTensorBSplineBasis< 1, T >, gsTensorBSplineBasis< d, T >, gsTensorBSplineBasis< domainDim+1, T >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, gsTHBSplineBasis< d, T >, gsLagrangeBasis< T >, gsMappedSingleBasis< d, T >, gsFunction< T >, gsConstantBasis< T >, gsLegendreBasis< T >, gsMonomialBasis< T >, and gsMvLegendreBasis< T >.

void compute ( const gsMatrix< T > &  in,
gsFuncData< T > &  out 
) const
virtual

Computes function data.

This function evaluates the functions and their derivatives at the points in and writes them in the corresponding fields of out. Which field to write (and what to compute) is controlled by the out.flags (see also gsFuncData).

The input points in are expected to be compatible with the implementation/representation of the function, i.e. they should be points inside the domain of definitition of the function

Parameters
[in]in
[out]out

Reimplemented in gsGeometry< T >, and gsConstantFunction< T >.

gsMatrix< T > deriv ( const gsMatrix< T > &  u) const

Evaluate the derivatives,.

See Also
deriv_into()
gsMatrix< T > deriv2 ( const gsMatrix< T > &  u) const

Evaluates the second derivatives of active (i.e., non-zero) basis at points u.

See documentation for deriv2_into() (the one without input parameter coefs) for details.

See Also
deriv2_into()
Parameters
[in]uEvaluation points in columns.
Returns
For every column of u, a column containing the second derivatives. See documentation for deriv2_into() (the one without input parameter coefs) for details.
void deriv2_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtual

Second derivatives.

For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:

\[ \left[ \begin{array}{ccccc} \partial_{1}\partial_{1}f_1(p_1) & \partial_{1}\partial_{1}f_1(p_2) & \ldots & \partial_{1}\partial_{1}f_1(p_N)\\ \partial_{2}\partial_{2}f_1(p_1) & \partial_{2}\partial_{2}f_1(p_2) & \ldots & \partial_{2}\partial_{2}f_1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}\partial_{k}f_1(p_1) & \partial_{k}\partial_{k}f_1(p_2) & \ldots & \partial_{k}\partial_{k}f_1(p_N)\\ \partial_{1}\partial_{2}f_1(p_1) & \partial_{1}\partial_{2}f_1(p_2) & \ldots & \partial_{1}\partial_{2}f_1(p_N)\\ \partial_{1}\partial_{3}f_1(p_1) & \partial_{1}\partial_{3}f_1(p_2) & \ldots & \partial_{1}\partial_{3}f_1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{1}\partial_{k}f_1(p_1) & \partial_{1}\partial_{k}f_1(p_2) & \ldots & \partial_{1}\partial_{k}f_1(p_N)\\ \partial_{2}\partial_{3}f_1(p_1) & \partial_{2}\partial_{3}f_1(p_2) & \ldots & \partial_{2}\partial_{3}f_1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{2}\partial_{k}f_1(p_1) & \partial_{2}\partial_{k}f_1(p_2) & \ldots & \partial_{2}\partial_{k}f_1(p_N)\\ \partial_{3}\partial_{4}f_1(p_1) & \partial_{3}\partial_{4}f_1(p_2) & \ldots & \partial_{3}\partial_{4}f_1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k-1}\partial_{k}f_1(p_1) & \partial_{k-1}\partial_{k}f_1(p_2) & \ldots & \partial_{k-1}\partial_{k}f_1(p_N)\\ \partial_{1}\partial_{1}f_2(p_1) & \partial_{1}\partial_{1}f_2(p_2) & \ldots & \partial_{1}\partial_{1}f_2(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k-1}\partial_{k}f_S(p_1) & \partial_{k-1}\partial_{k}f_S(p_2) & \ldots & \partial_{k-1}\partial_{k}f_S(p_N)\\ \end{array} \right] \]

For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^{m}\) the format is:

\[ \left[ \begin{array}{ccccc} \partial_{1}\partial_{1}f_1^{(1)}(p_1) & \partial_{1}\partial_{1}f_1^{(1)}(p_2) & \ldots & \partial_{1}\partial_{1}f_1^{(1)}(p_N)\\ \partial_{2}\partial_{2}f_1^{(1)}(p_1) & \partial_{2}\partial_{2}f_1^{(1)}(p_2) & \ldots & \partial_{2}\partial_{2}f_1^{(1)}(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}\partial_{k}f_1^{(1)}(p_1) & \partial_{k}\partial_{k}f_1^{(1)}(p_2) & \ldots & \partial_{k}\partial_{k}f_1^{(1)}(p_N)\\ \partial_{1}\partial_{2}f_1^{(1)}(p_1) & \partial_{1}\partial_{2}f_1^{(1)}(p_2) & \ldots & \partial_{1}\partial_{2}f_1^{(1)}(p_N)\\ \partial_{1}\partial_{3}f_1^{(1)}(p_1) & \partial_{1}\partial_{3}f_1^{(1)}(p_2) & \ldots & \partial_{1}\partial_{3}f_1^{(1)}(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k-1}\partial_{k}f_1{(1)}(p_1) & \partial_{k-1}\partial_{k}f_1^{(1)}(p_2) & \ldots & \partial_{k-1}\partial_{k}f_1^{(1)}(p_N)\\ \partial_{1}\partial_{1}f_1^{(2)}(p_1) & \partial_{1}\partial_{1}f_1^{(2)}(p_2) & \ldots & \partial_{1}\partial_{1}f_1^{(2)}(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k-1}\partial_{k}f_1^{(m)}(p_1) & \partial_{k-1}\partial_{k}f_1^{(m)}(p_2) & \ldots & \partial_{k-1}\partial_{k}f_1^{(m)}(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k-1}\partial_{k}f_S^{(m)}(p_1) & \partial_{k-1}\partial_{k}f_S^{(m)}(p_2) & \ldots & \partial_{k-1}\partial_{k}f_S^{(m)}(p_N)\\ \end{array} \right] \]

where \( f^{(i)}_j\) is the \(i\)-th component of function \( f_j\) of the set.

Parameters
u
result

Reimplemented in gsBasis< T >, gsBasis< Scalar >, gsBasis< real_t >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, gsGeometry< T >, gsFunctionExpr< T >, gsFunction< T >, gsLagrangeBasis< T >, gsMappedSingleBasis< d, T >, gsConstantFunction< T >, gsTHBSplineBasis< d, T >, gsPreCICEFunction< T >, gsLegendreBasis< T >, gsAffineFunction< T >, gsHBSplineBasis< d, T >, gsMappedSingleSpline< d, T >, gsMonomialBasis< T >, gsMvLegendreBasis< T >, gsGeometryTransform< T >, and gsFuncCoordinate< T >.

void deriv_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtual

First derivatives.

For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:

\[ \left[ \begin{array}{ccccc} \partial_{1}f_1(p_1) & \partial_{1}f_1(p_2) & \ldots & \partial_{1}f_1(p_N)\\ \partial_{2}f_1(p_1) & \partial_{2}f_1(p_2) & \ldots & \partial_{2}f_1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}f_1(p_1) & \partial_{k}f_1(p_2) & \ldots & \partial_{k}f_1(p_N)\\ \partial_{1}f_2(p_1) & \partial_{1}f_2(p_2) & \ldots & \partial_{1}f_2(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}f_S(p_1) & \partial_{k}f_S(p_2) & \ldots & \partial_{k}f_S(p_N)\\ \end{array} \right] \]

For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^{m}\) the format is:

\[ \left[ \begin{array}{ccccc} \partial_{1}f_1^1(p_1) & \partial_{1}f_1^1(p_2) & \ldots & \partial_{1}f_1^1(p_N)\\ \partial_{2}f_1^1(p_1) & \partial_{1}f_2^1(p_2) & \ldots & \partial_{1}f_2^1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}f_1^1(p_1) & \partial_{k}f_1^1(p_2) & \ldots & \partial_{k}f_1^1(p_N)\\ \partial_{1}f_1^2(p_1) & \partial_{1}f_1^2(p_2) & \ldots & \partial_{1}f_1^2(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}f_1^2(p_1) & \partial_{k}f_1^2(p_2) & \ldots & \partial_{k}f_1^2(p_N)\\ \partial_{1}f_2^1(p_1) & \partial_{1}f_2^1(p_2) & \ldots & \partial_{1}f_2^1(p_N)\\ \vdots & \vdots & & \vdots\\ \partial_{k}f_S^{(m)}(p_1) & \partial_{k}f_S^{(m)}(p_2) & \ldots & \partial_{k}f_S^{(m)}(p_N) \end{array} \right] \]

where \(f^{(i)}_j\) is the \(i\)-th component of function \(f_j\) of the set.

Parameters
u
result

Reimplemented in gsBasis< T >, gsBasis< Scalar >, gsBasis< real_t >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, gsTensorBSplineBasis< 1, T >, gsGeometry< T >, gsFunctionExpr< T >, gsLagrangeBasis< T >, gsMappedSingleBasis< d, T >, gsFunction< T >, gsConstantFunction< T >, gsTHBSplineBasis< d, T >, gsPreCICEFunction< T >, gsAffineFunction< T >, gsHBSplineBasis< d, T >, gsLegendreBasis< T >, gsMappedSingleSpline< d, T >, gsMvLegendreBasis< T >, gsMonomialBasis< T >, gsConstantBasis< T >, gsGeometrySlice< T >, gsSquaredDistance< T >, gsBasisFun< T >, gsGeometryTransform< T >, and gsFuncCoordinate< T >.

gsMatrix< T > eval ( const gsMatrix< T > &  u) const

Evaluate the function,.

See Also
eval_into()
void eval_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtual

Evaluates the function(s).

For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:

\[ \left[ \begin{array}{ccccc} f_1(p_1) & f_1(p_2) & \ldots & f_1(p_N)\\ f_2(p_1) & f_2(p_2) & \ldots & f_2(p_N)\\ \vdots & \vdots & & \vdots\\ f_S(p_1) & f_S(p_2) & \ldots & f_S(p_N) \end{array} \right] \]

For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^m\) the format is:

\[ \left[ \begin{array}{ccccc} f_1^1(p_1) & f_1^{(1)}(p_2) & \ldots & f_1^{(1)}(p_N)\\ f_1^2(p_1) & f_1^{(2)}(p_2) & \ldots & f_1^{(2)}(p_N)\\ \vdots & \vdots & & \vdots\\ f_1^{(m)}(p_1) & f_1^{(m)}(p_2) & \ldots & f_1^{(m)}(p_N)\\ f_2^{(1)}(p_1) & f_2^{(1)}(p_2) & \ldots & f_2^{(1)}(p_N)\\ \vdots & \vdots & & \vdots\\ f_S^{(m)}(p_1) & f_S^{(m)}(p_2) & \ldots & f_S^{(m)}(p_N) \end{array} \right] \]

where \(f^{(i)}_j\) is the \(i\)-th component of function \(f_j\) of the set.

Parameters
u
result

Reimplemented in gsBasis< T >, gsBasis< Scalar >, gsBasis< real_t >, gsTHBSplineBasis< d, T >, gsPatchIdField< T >, gsMaterialMatrixEvalSingle< T, out >, gsParamField< T >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, gsShellStressFunction< T >, gsMaterialMatrixIntegrateSingle< T, out >, gsNormalField< T >, gsFsiLoad< T >, gsFunctionExpr< T >, gsGeometry< T >, gsLagrangeBasis< T >, gsMappedSingleBasis< d, T >, gsPiecewiseFunction< T >, gsConstantFunction< T >, gsJacDetField< T >, gsDetFunction< T >, gsRemapInterface< T >, gsFunction< T >, gsGradientField< T >, gsCPPInterface< T >, gsHBSplineBasis< d, T >, gsAffineFunction< T >, gsPreCICEFunction< T >, gsLegendreBasis< T >, gsMvLegendreBasis< T >, gsMappedSingleSpline< d, T >, gsConstantBasis< T >, gsMonomialBasis< T >, gsCauchyStressFunction< T >, gsBasisFun< T >, gsGeometrySlice< T >, gsGeometryTransform< T >, gsFuncCoordinate< T >, gsAbsError< T >, gsElementErrorPlotter< T >, and gsSquaredDistance< T >.

std::vector< gsMatrix< T > > evalAllDers ( const gsMatrix< T > &  u,
int  n 
) const

Evaluate all derivatives upto order n,.

See Also
evalAllDers_into