G+Smo
25.01.0
Geometry + Simulation Modules
|
Holds a set of patch-wise bases and their topology information.
T | coefficient type |
Public Types | |
typedef BasisContainer::iterator | iterator |
Type definitions. | |
Public Member Functions | |
gsMatrix< index_t > | active (const gsMatrix< T > &u) const |
Returns the indices of active (nonzero) functions at points u, as a list of indices. | |
virtual void | active_into (const gsMatrix< T > &u, gsMatrix< index_t > &result) const |
Indices of active (non-zero) function(s) for each point. | |
void | addBasis (gsBasis< T > *g) |
Add a basis (ownership of the pointer is also acquired) | |
void | addBasis (typename gsBasis< T >::uPtr g) |
Add a basis. | |
void | addInterface (gsBasis< T > *g1, boxSide s1, gsBasis< T > *g2, boxSide s2) |
Add an interface joint between side s1 of geometry g1 side s2 of geometry g2. | |
void | addPatchBoundary (gsBasis< T > *g, boxSide s) |
Add side s of patch g to the outer boundary of the domain. | |
const_reference | at (size_t i) const |
Assess i-th parametric basis. | |
const gsBasis< T > & | basis (const index_t k) const |
Helper which casts and returns the k-th piece of this function set as a gsBasis. | |
gsBasis< T > & | basis (const size_t i) |
Return the i-th basis block. | |
const gsBasis< T > & | basis (const size_t i) const |
Return the i-th basis block. | |
iterator | begin () |
const_iterator | begin () const |
void | clear () |
Clear (delete) all patches. | |
uPtr | clone () |
Clone methode. Produceds a deep copy inside a uPtr. | |
gsBasis< T >::uPtr | componentBasis (patchComponent p) const |
Returns the basis that corresponds to the component. | |
std::vector< typename gsBasis< T >::uPtr > | componentBasis_withIndices (const std::vector< patchComponent > &pc, const gsDofMapper &dm, gsMatrix< index_t > &indices, bool no_lower=true) const |
Returns the bases that correspond to the components. | |
gsBasis< T >::uPtr | componentBasis_withIndices (patchComponent pc, const gsDofMapper &dm, gsMatrix< index_t > &indices, bool no_lower=true) const |
Returns the basis that corresponds to the component. | |
virtual void | compute (const gsMatrix< T > &in, gsFuncData< T > &out) const |
Computes function data. | |
short_t | degree (size_t i=0, short_t comp=0) const |
Returns the polynomial degree of basis i in component j, if the basis is of polynomial or piecewise polynomial type. | |
void | degreeDecrease (short_t const i=1, short_t const dir=-1) |
Increase the degree of every basis by the given amount. (keeping the multiplicity) | |
void | degreeElevate (short_t const i=1, short_t const dir=-1) |
Elevate the degree of every basis by the given amount. (keeping the smoothness) | |
void | degreeIncrease (short_t const i=1, short_t const dir=-1) |
Increase the degree of every basis by the given amount. (keeping the multiplicity) | |
void | degreeReduce (short_t const i=1) |
Reduce the degree of the basis by the given amount. | |
gsMatrix< T > | deriv (const gsMatrix< T > &u) const |
Evaluate the derivatives,. | |
gsMatrix< T > | deriv2 (const gsMatrix< T > &u) const |
Evaluates the second derivatives of active (i.e., non-zero) functions at points u. | |
virtual void | deriv2_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Second derivatives. | |
virtual void | deriv_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
First derivatives. | |
short_t | dim () const |
Dimension of the parameter domain (must match for all bases). | |
short_t | domainDim () const |
Dimension of the (source) domain. | |
iterator | end () |
const_iterator | end () const |
gsMatrix< T > | eval (const gsMatrix< T > &u) const |
Evaluate the function,. | |
virtual void | eval_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Evaluates the function(s). | |
std::vector< gsMatrix< T > > | evalAllDers (const gsMatrix< T > &u, int n, bool sameElement=false) const |
Evaluate all derivatives upto order n,. | |
virtual void | evalAllDers_into (const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const |
Evaluate the nonzero functions and their derivatives up to order n at points u into result. | |
int | findBasisIndex (gsBasis< T > *g) const |
Search for the given basis and return its index. | |
const gsFunction< T > & | function (const index_t k) const |
Helper which casts and returns the k-th piece of this function set as a gsFunction. | |
gsMultiBasis () | |
Default empty constructor. | |
gsMultiBasis (BasisContainer &bases, const gsBoxTopology &topology) | |
Create from a vector of bases and topology. | |
gsMultiBasis (BasisContainer &bases, const std::vector< patchSide > &boundary, const std::vector< boundaryInterface > &interfaces) | |
Create from bases and boundary/interface information. | |
gsMultiBasis (const gsBasis< T > &geo, bool numeratorOnly=false) | |
Create a single-basis instance. | |
gsMultiBasis (const gsMultiBasis &other) | |
Copy constructor (makes deep copy) | |
gsMultiBasis (const gsMultiPatch< T > &mpatch, bool numeratorOnly=false) | |
Create a multi-basis instance from a gsMultiPatch. | |
void | matchInterface (const boundaryInterface &bi, gsDofMapper &mapper) const |
Matches the degrees of freedom along an interface. | |
short_t | maxCwiseDegree () const |
Maximum degree with respect to all variables. | |
short_t | maxDegree (short_t k) const |
Maximum degree with respect to variable k. | |
short_t | minCwiseDegree () const |
Minimum degree with respect to all variables. | |
short_t | minDegree (short_t k) const |
Minimum degree with respect to variable k. | |
size_t | nBases () const |
Number of patch-wise bases. | |
index_t | nPieces () const |
Number of patch-wise bases. | |
gsMultiBasis & | operator= (gsMultiBasis other) |
Assignment operator (uses copy-and-swap idiom) | |
const gsBasis< T > & | piece (const index_t i) const |
Returns the piece(s) of the function(s) at subdomain k. | |
std::ostream & | print (std::ostream &os) const |
Prints the object as a string. | |
void | reduceContinuity (int const i=1) |
Reduce the continuity by i. | |
void | refine (size_t k, gsMatrix< T > const &boxes, int refExt) |
Refine the are defined by boxes on patch k with extension refExt. | |
void | refineElements (int k, std::vector< index_t > const &boxes) |
Refine the are defined by boxes on patch k. | |
bool | repairInterface (const boundaryInterface &bi) |
Checks if the interface is fully matching, and if not, repairs it. | |
bool | repairInterface2d (const boundaryInterface &bi) |
Checks if the 2D-interface is fully matching, and if not, repairs it. | |
template<short_t d> | |
bool | repairInterfaceFindElements (const boundaryInterface &bi, std::vector< index_t > &refEltsFirst, std::vector< index_t > &refEltsSecond) |
Finds the elements that need to be refined in order to repair an interface. | |
void | repairInterfaces (const std::vector< boundaryInterface > &bivec) |
Checks if the interfaces bivec are fully matching, and if not, repairs them, i.e., makes them fully matching. | |
void | setDegree (short_t const &i) |
Set the degree of the basis. | |
index_t | size () const |
size | |
int | size (size_t i) const |
The number of basis functions in basis i. | |
void | swap (gsMultiBasis &other) |
Swap with another gsMultiBasis. | |
short_t | targetDim () const |
Dimension of the target space. | |
void | tileParameters () |
size_t | totalElements () const |
The total number of elements in all patches. | |
size_t | totalSize () const |
The total number of basis functions in all bases. | |
void | uniformCoarsen (int numKnots=1) |
Coarsen every basis uniformly. | |
void | uniformCoarsen_withTransfer (gsSparseMatrix< T, RowMajor > &transfer, const gsBoundaryConditions< T > &boundaryConditions, const gsOptionList &assemblerOptions, int numKnots=1, index_t unk=0) |
Coarsen every basis uniformly. | |
void | uniformRefine (int numKnots=1, int mul=1, int dir=-1) |
Refine every basis uniformly. | |
void | uniformRefine_withTransfer (gsSparseMatrix< T, RowMajor > &transfer, const gsBoundaryConditions< T > &boundaryConditions, const gsOptionList &assemblerOptions, int numKnots=1, int mul=1, index_t unk=0) |
Refine every basis uniformly. | |
void | uniformRefineComponent (int comp, int numKnots=1, int mul=1) |
Refine the component comp of every basis uniformly by inserting numKnots new knots on each knot span. | |
~gsMultiBasis () | |
Destructor. | |
Static Public Member Functions | |
static void | combineTransferMatrices (const std::vector< gsSparseMatrix< T, RowMajor > > &localTransferMatrices, const gsDofMapper &coarseMapper, const gsDofMapper &fineMapper, gsSparseMatrix< T, RowMajor > &transferMatrix) |
This function takes local transfer matrices (per patch) and combines them using given DofMappers to a global transfer matrix. Simultanously, this function restricts the matrices to the free dofs, e.g., Dirichlet dofs might be eliminated. | |
|
explicit |
Create a multi-basis instance from a gsMultiPatch.
mpatch | used gsMultiPatch |
numeratorOnly | If true, and the bases are derived from gsRationalBasis, then only the source bases (numerators) are returned |
Returns the indices of active (nonzero) functions at points u, as a list of indices.
|
virtualinherited |
Indices of active (non-zero) function(s) for each point.
The columns are sorted in increasing order, if on a point there are less active then the number of rows in the result matrix (some other point has more actives) then the rest of the column is filled with 0s.
u | |
result |
Reimplemented in gsBasis< SrcT::Scalar_t >, gsLagrangeBasis< T >, gsLegendreBasis< T >, gsMonomialBasis< T >, gsMvLegendreBasis< T >, gsBasis< T >, gsConstantBasis< T >, gsFunction< T >, gsHTensorBasis< d, T >, gsTHBSplineBasis< d, T >, gsMappedSingleBasis< d, T >, gsTensorBSplineBasis< 1, T >, gsTensorBSplineBasis< d, T >, gsTensorBSplineBasis< domainDim+1, T >, gsTensorBasis< d, T >, and gsTensorBasis< 1, T >.
void addInterface | ( | gsBasis< T > * | g1, |
boxSide | s1, | ||
gsBasis< T > * | g2, | ||
boxSide | s2 | ||
) |
Add an interface joint between side s1 of geometry g1 side s2 of geometry g2.
|
inline |
Get an iterator to the beginning of the patches
|
inline |
Get a const-iterator to the patches
|
static |
This function takes local transfer matrices (per patch) and combines them using given DofMappers to a global transfer matrix. Simultanously, this function restricts the matrices to the free dofs, e.g., Dirichlet dofs might be eliminated.
[in] | localTransferMatrices | The local and full (also non-free dofs) transfer matrices per patch |
[in] | coarseMapper | The DofMapper on the coarse grid |
[in] | fineMapper | The DofMapper on the fine grid |
[out] | transferMatrix | The combined transfer matrix restricted to the free dofs |
std::vector< typename gsBasis< T >::uPtr > componentBasis_withIndices | ( | const std::vector< patchComponent > & | pc, |
const gsDofMapper & | dm, | ||
gsMatrix< index_t > & | indices, | ||
bool | no_lower = true |
||
) | const |
Returns the bases that correspond to the components.
pc | The components |
dm | The dof mapper to be used |
indices | The row vector where the indices are stored to |
no_lower | If true, the transfer matrix does not include parts belonging to lower-order components (i.e., edges without corners or faces without corners and edges) |
gsBasis< T >::uPtr componentBasis_withIndices | ( | patchComponent | pc, |
const gsDofMapper & | dm, | ||
gsMatrix< index_t > & | indices, | ||
bool | no_lower = true |
||
) | const |
Returns the basis that corresponds to the component.
pc | The component |
dm | The dof mapper to be used |
indices | The row vector where the indices are stored to |
no_lower | If true, the transfer matrix does not include parts belonging to lower-order components (i.e., edges without corners or faces without corners and edges) |
|
virtualinherited |
Computes function data.
This function evaluates the functions and their derivatives at the points in and writes them in the corresponding fields of out. Which field to write (and what to compute) is controlled by the out.flags (see also gsFuncData).
The input points in are expected to be compatible with the implementation/representation of the function, i.e. they should be points inside the domain of definitition of the function
[in] | in | |
[out] | out |
Reimplemented in gsConstantFunction< T >, and gsGeometry< T >.
Evaluate the derivatives,.
Evaluates the second derivatives of active (i.e., non-zero) functions at points u.
See documentation for deriv2_into() (the one without input parameter coefs) for details.
[in] | u | Evaluation points in columns. |
|
virtualinherited |
Second derivatives.
For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:
\[ \left[ \begin{array}{ccccc} \partial_{1}\partial_{1}f_1(\mathbf{u}_1) & \partial_{1}\partial_{1}f_1(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_1(\mathbf{u}_N)\\ \partial_{2}\partial_{2}f_1(\mathbf{u}_1) & \partial_{2}\partial_{2}f_1(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{2}f_1(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}\partial_{n}f_1(\mathbf{u}_1) & \partial_{n}\partial_{n}f_1(\mathbf{u}_2) & \ldots & \partial_{n}\partial_{n}f_1(\mathbf{u}_N)\\ \partial_{1}\partial_{2}f_1(\mathbf{u}_1) & \partial_{1}\partial_{2}f_1(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{2}f_1(\mathbf{u}_N)\\ \partial_{1}\partial_{3}f_1(\mathbf{u}_1) & \partial_{1}\partial_{3}f_1(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{3}f_1(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{n}f_1(\mathbf{u}_1) & \partial_{1}\partial_{n}f_1(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{n}f_1(\mathbf{u}_N)\\ \partial_{2}\partial_{3}f_1(\mathbf{u}_1) & \partial_{2}\partial_{3}f_1(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{3}f_1(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots\\ \partial_{2}\partial_{n}f_1(\mathbf{u}_1) & \partial_{2}\partial_{n}f_1(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{n}f_1(\mathbf{u}_N)\\ \partial_{3}\partial_{4}f_1(\mathbf{u}_1) & \partial_{3}\partial_{4}f_1(\mathbf{u}_2) & \ldots & \partial_{3}\partial_{4}f_1(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_1(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_1(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_1(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{1}f_S(\mathbf{u}_1) & \partial_{1}\partial_{1}f_S(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_S(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_S(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_S(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_S(\mathbf{u}_N)\\ \end{array} \right] \]
For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^{m}\) the format is:
\[ \left[ \begin{array}{ccccc} \partial_{1}\partial_{1}f_1^{(1)}(\mathbf{u}_1) & \partial_{1}\partial_{1}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{2}\partial_{2}f_1^{(1)}(\mathbf{u}_1) & \partial_{2}\partial_{2}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{2}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}\partial_{n}f_1^{(1)}(\mathbf{u}_1) & \partial_{n}\partial_{n}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{n}\partial_{n}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{1}\partial_{2}f_1^{(1)}(\mathbf{u}_1) & \partial_{1}\partial_{2}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{2}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{1}\partial_{3}f_1^{(1)}(\mathbf{u}_1) & \partial_{1}\partial_{3}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{3}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{n}f_1^{(1)}(\mathbf{u}_1) & \partial_{1}\partial_{n}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{n}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{2}\partial_{3}f_1^{(1)}(\mathbf{u}_1) & \partial_{2}\partial_{3}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{3}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots\\ \partial_{2}\partial_{n}f_1^{(1)}(\mathbf{u}_1) & \partial_{2}\partial_{n}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{2}\partial_{n}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{3}\partial_{4}f_1^{(1)}(\mathbf{u}_1) & \partial_{3}\partial_{4}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{3}\partial_{4}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_1^{(1)}(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{1}f_1^{(m)}(\mathbf{u}_1) & \partial_{1}\partial_{1}f_1^{(m)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_1^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_1^{(m)}(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_1^{(m)}(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_1^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{1}f_S^{(1)}(\mathbf{u}_1) & \partial_{1}\partial_{1}f_S^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_S^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_S^{(1)}(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_S^{(1)}(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_S^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}\partial_{1}f_S^{(m)}(\mathbf{u}_1) & \partial_{1}\partial_{1}f_S^{(m)}(\mathbf{u}_2) & \ldots & \partial_{1}\partial_{1}f_S^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n-1}\partial_{n}f_S^{(m)}(\mathbf{u}_1) & \partial_{n-1}\partial_{n}f_S^{(m)}(\mathbf{u}_2) & \ldots & \partial_{n-1}\partial_{n}f_S^{(m)}(\mathbf{u}_N)\\ \end{array} \right] \]
where \( f^{(i)}_j\) is the \(i\)-th component of function \( f_j\) of the set.
u | |
result |
Reimplemented in gsFunction< real_t >, gsBasis< SrcT::Scalar_t >, gsGeometryTransform< T >, gsLagrangeBasis< T >, gsLegendreBasis< T >, gsMonomialBasis< T >, gsMvLegendreBasis< T >, gsAffineFunction< T >, gsBasis< T >, gsConstantFunction< T >, gsFuncCoordinate< T >, gsFunction< T >, gsFunctionExpr< T >, gsGeometry< T >, gsHBSplineBasis< d, T >, gsTHBSplineBasis< d, T >, gsMappedSingleBasis< d, T >, gsMappedSingleSpline< d, T >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, and gsTensorBasis< 1, T >.
|
virtualinherited |
First derivatives.
For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:
\[ \left[ \begin{array}{ccccc} \partial_{1}f_1(\mathbf{u}_1) & \partial_{1}f_1(\mathbf{u}_2) & \ldots & \partial_{1}f_1(\mathbf{u}_N) \\ \vdots & \vdots & & \vdots \\ \partial_{n}f_1(\mathbf{u}_1) & \partial_{n}f_1(\mathbf{u}_2) & \ldots & \partial_{n}f_1(\mathbf{u}_N) \\ \vdots & \vdots & & \vdots \\ \partial_{1}f_S(\mathbf{u}_S) & \partial_{1}f_S(\mathbf{u}_2) & \ldots & \partial_{1}f_S(\mathbf{u}_N) \\ \vdots & \vdots & & \vdots \\ \partial_{n}f_S(\mathbf{u}_S) & \partial_{n}f_S(\mathbf{u}_2) & \ldots & \partial_{n}f_S(\mathbf{u}_N) \\ \end{array} \right], \]
For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^{m}\) the format is:
\[ \left[ \begin{array}{ccccc} \partial_{1}f_1^{(1)}(\mathbf{u}_1) & \partial_{1}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}f_1^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_1^{(1)}(\mathbf{u}_1) & \partial_{n}f_1^{(1)}(\mathbf{u}_2) & \ldots & \partial_{n}f_1^{(1)}(\mathbf{u}_N)\\ \partial_{1}f_1^{(2)}(\mathbf{u}_1) & \partial_{1}f_1^{(2)}(\mathbf{u}_2) & \ldots & \partial_{1}f_1^{(2)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_1^{(2)}(\mathbf{u}_1) & \partial_{n}f_1^{(2)}(\mathbf{u}_2) & \ldots & \partial_{n}f_1^{(2)}(\mathbf{u}_N)\\ \partial_{1}f_1^{(m)}(\mathbf{u}_1) & \partial_{1}f_1^{(m)}(\mathbf{u}_2) & \ldots & \partial_{1}f_1^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_1^{(m)}(\mathbf{u}_1) & \partial_{n}f_1^{(m)}(\mathbf{u}_2) & \ldots & \partial_{n}f_1^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{1}f_S^{(1)}(\mathbf{u}_S) & \partial_{1}f_S^{(1)}(\mathbf{u}_2) & \ldots & \partial_{1}f_S^{(1)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_S^{(1)}(\mathbf{u}_S) & \partial_{n}f_S^{(1)}(\mathbf{u}_2) & \ldots & \partial_{n}f_S^{(1)}(\mathbf{u}_N)\\ \partial_{1}f_S^{(2)}(\mathbf{u}_S) & \partial_{1}f_S^{(2)}(\mathbf{u}_2) & \ldots & \partial_{1}f_S^{(2)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_S^{(2)}(\mathbf{u}_S) & \partial_{n}f_S^{(2)}(\mathbf{u}_2) & \ldots & \partial_{n}f_S^{(2)}(\mathbf{u}_N)\\ \partial_{1}f_S^{(m)}(\mathbf{u}_S) & \partial_{1}f_S^{(m)}(\mathbf{u}_2) & \ldots & \partial_{1}f_S^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ \partial_{n}f_S^{(m)}(\mathbf{u}_S) & \partial_{n}f_S^{(m)}(\mathbf{u}_2) & \ldots & \partial_{n}f_S^{(m)}(\mathbf{u}_N)\\ \end{array} \right], \]
where \(f^{(i)}_j\) is the \(i\)-th component of function \(f_j\) of the set.
u | |
result |
Reimplemented in gsFunction< real_t >, gsBasis< SrcT::Scalar_t >, gsLagrangeBasis< T >, gsLegendreBasis< T >, gsMonomialBasis< T >, gsMvLegendreBasis< T >, gsAffineFunction< T >, gsBasis< T >, gsBasisFun< T >, gsConstantBasis< T >, gsConstantFunction< T >, gsFuncCoordinate< T >, gsFunction< T >, gsFunctionExpr< T >, gsGeometry< T >, gsSquaredDistance< T >, gsGeometrySlice< T >, gsGeometryTransform< T >, gsHBSplineBasis< d, T >, gsTHBSplineBasis< d, T >, gsMappedSingleBasis< d, T >, gsMappedSingleSpline< d, T >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, and gsTensorBasis< 1, T >.
|
inlinevirtual |
Dimension of the (source) domain.
Implements gsFunctionSet< T >.
|
inline |
Get an iterator to the end of the patches
|
inline |
Get a const iterator to the end of the patches
Evaluate the function,.
|
virtualinherited |
Evaluates the function(s).
For scalar valued functions \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}\) format is:
\[ \left[ \begin{array}{ccccc} f_1(\mathbf{u}_1) & f_1(\mathbf{u}_2) & \ldots & f_1(\mathbf{u}_N)\\ f_2(\mathbf{u}_1) & f_2(\mathbf{u}_2) & \ldots & f_2(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots\\ f_S(\mathbf{u}_1) & f_S(\mathbf{u}_2) & \ldots & f_S(\mathbf{u}_N) \end{array} \right] \]
For vector valued functions function \(f_1, \ldots, f_S\) from \(\mathbb{R}^n\rightarrow\mathbb{R}^m\) the format is:
\[ \left[ \begin{array}{ccccc} f_1^{(1)}(\mathbf{u}_1) & f_1^{(1)}(\mathbf{u}_2) & \ldots & f_1^{(1)}(\mathbf{u}_N) \\ \vdots & \vdots & & \vdots \\ f_1^{(m)}(\mathbf{u}_1) & f_1^{(m)}(\mathbf{u}_2) & \ldots & f_1^{(m)}(\mathbf{u}_N)\\ \vdots & \vdots & & \vdots \\ f_S^{(1)}(\mathbf{u}_1) & f_S^{(1)}(\mathbf{u}_2) & \ldots & f_S^{(1)}(\mathbf{u}_N) \\ \vdots & \vdots & & \vdots \\ f_S^{(m)}(\mathbf{u}_1) & f_S^{(m)}(\mathbf{u}_2) & \ldots & f_S^{(m)}(\mathbf{u}_N) \end{array} \right] \]
where \(f^{(i)}_j\) is the \(i\)-th component of function \(f_j\) of the set.
u | |
result |
Reimplemented in gsBasis< SrcT::Scalar_t >, gsPiecewiseFunction< T >, gsElementErrorPlotter< T >, gsCauchyStressFunction< T >, gsDetFunction< T >, gsFsiLoad< T >, gsMaterialMatrixEvalSingle< T, out >, gsMaterialMatrixIntegrateSingle< T, out >, gsShellStressFunction< T >, gsLagrangeBasis< T >, gsLegendreBasis< T >, gsMonomialBasis< T >, gsMvLegendreBasis< T >, gsCPPInterface< T >, gsRemapInterface< T >, gsAffineFunction< T >, gsBasis< T >, gsBasisFun< T >, gsConstantBasis< T >, gsConstantFunction< T >, gsAbsError< T >, gsGradientField< T >, gsJacDetField< T >, gsNormalField< T >, gsParamField< T >, gsPatchIdField< T >, gsFuncCoordinate< T >, gsFunctionExpr< T >, gsGeometry< T >, gsSquaredDistance< T >, gsGeometrySlice< T >, gsGeometryTransform< T >, gsHBSplineBasis< d, T >, gsTHBSplineBasis< d, T >, gsMappedSingleBasis< d, T >, gsMappedSingleSpline< d, T >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, and gsFunction< T >.
|
inherited |
Evaluate all derivatives upto order n,.
|
virtualinherited |
Evaluate the nonzero functions and their derivatives up to order n at points u into result.
The derivatives (the 0-th derivative is the function value) are stored in a result. result is a std::vector, where result[i] is a gsMatrix which contains the i-th derivatives.
The entries in result[0], result[1], and result[2] are ordered as in eval_into(), deriv_into(), and deriv2_into(), respectively. For i > 2, the derivatives are stored in lexicographical order, e.g. for order i = 3 and dimension 2 the derivatives are stored as follows: \( \partial_{xxx}, \, \partial_{xxy}, \, \partial_{xyy}, \, \partial_{yyy}.\, \)
[in] | u | Evaluation points, each column corresponds to one evaluation point. |
[in] | n | All derivatives up to order n are computed and stored in result. |
[in,out] | result | See above for format. |
Reimplemented in gsConstantFunction< T >, gsGeometry< T >, gsSquaredDistance< T >, gsTHBSplineBasis< d, T >, gsMappedSingleBasis< d, T >, gsMappedSingleSpline< d, T >, gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, and gsTensorBasis< 1, T >.
void matchInterface | ( | const boundaryInterface & | bi, |
gsDofMapper & | mapper | ||
) | const |
Matches the degrees of freedom along an interface.
The boundaryInterface specifying the interface is passed as argument.
The degrees of freedom (DOFs) along the interface from both patches are matched in the sense that they are then treated as one global DOF by the mapper.
bi | specifies the interface to be matched |
mapper | the gsDofMapper which should know that these interface-DOFs are matched. |
|
inline |
Refine the are defined by boxes on patch k with extension refExt.
See gsHTensorBasis::refineWithExtension() for further documentation.
|
inline |
Refine the are defined by boxes on patch k.
See gsHTensorBasis::refineElements() for further documentation.
bool repairInterface | ( | const boundaryInterface & | bi | ) |
Checks if the interface is fully matching, and if not, repairs it.
bool repairInterface2d | ( | const boundaryInterface & | bi | ) |
Checks if the 2D-interface is fully matching, and if not, repairs it.
Same as repairInterface(), but only for 2D and a bit more efficient.
bool repairInterfaceFindElements | ( | const boundaryInterface & | bi, |
std::vector< index_t > & | refEltsFirst, | ||
std::vector< index_t > & | refEltsSecond | ||
) |
Finds the elements that need to be refined in order to repair an interface.
This function compares the hierarchical meshes on both patches associated with the boundaryInterface bi. The elements that need to be refined on bi.first() and bi.second() are stored in refEltsFirst and refEltsSecond, respectively.
Subsequent calls of the functions
m_bases[ bi.first().patch ]->refineElements( refEltsFirst )
m_bases[ bi.second().patch ]->refineElements( refEltsSecond )
will repair the interface in the sense that the resulting meshes are fully matching (this is done in repairInterface()).
[in] | bi | bondaryInterface to be checked. |
[out] | refEltsFirst | Contains elements (and levels) specifying needed refinement on patch bi.first(). |
[out] | refEltsSecond | Contains elements (and levels) specifying needed refinement on patch bi.second(). |
Is called by repairInterface(), templated over dimension.
|
inline |
Checks if the interfaces bivec are fully matching, and if not, repairs them, i.e., makes them fully matching.
Calls repairInterface() for each boundaryInterface in bivec.
|
inlinevirtual |
size
Reimplemented from gsFunctionSet< T >.
|
inlinevirtual |
Dimension of the target space.
Reimplemented from gsFunctionSet< T >.
void tileParameters | ( | ) |
Tile the parameter domains of the pieces according to the topology
|
inline |
Coarsen every basis uniformly.
This calls gsBasis::uniformCoarsen(numKnots) for all patches
void uniformCoarsen_withTransfer | ( | gsSparseMatrix< T, RowMajor > & | transfer, |
const gsBoundaryConditions< T > & | boundaryConditions, | ||
const gsOptionList & | assemblerOptions, | ||
int | numKnots = 1 , |
||
index_t | unk = 0 |
||
) |
Coarsen every basis uniformly.
The function writes a sparse matrix into the variable transfer that indicates how the functions on the coarse grid are represented as linear combinations as fine grid functions.
For computing the transfer matrix (but not for refinement), the boundaryConditions and the assemblerOptions have to be provided. By deault, the boundary conditions for unknown 0 are chosen. Use the parameter unk to choose another one.
|
inline |
Refine every basis uniformly.
This calls gsBasis::uniformRefine(numKnots,mul) for all patches
void uniformRefine_withTransfer | ( | gsSparseMatrix< T, RowMajor > & | transfer, |
const gsBoundaryConditions< T > & | boundaryConditions, | ||
const gsOptionList & | assemblerOptions, | ||
int | numKnots = 1 , |
||
int | mul = 1 , |
||
index_t | unk = 0 |
||
) |
Refine every basis uniformly.
The function writes a sparse matrix into the variable transfer that indicates how the functions on the coarse grid are represented as linear combinations as fine grid functions.
For computing the transfer matrix (but not for refinement), the boundaryConditions and the assemblerOptions have to be provided. By deault, the boundary conditions for unknown 0 are chosen. Use the parameter unk to choose another one.