G+Smo
24.08.0
Geometry + Simulation Modules
|
This class serves as the integrator of material matrices, based on gsMaterialMatrixBase.
T | Real type |
out | Output type (see MaterialOutput) |
Public Types | |
typedef memory::shared_ptr < gsFunction > | Ptr |
Shared pointer for gsFunction. | |
typedef memory::unique_ptr < gsFunction > | uPtr |
Unique pointer for gsFunction. | |
Public Member Functions | |
gsMatrix< index_t > | active (const gsMatrix< T > &u) const |
Returns the indices of active (nonzero) functions at points u, as a list of indices. More... | |
void | active_into (const gsMatrix< T > &u, gsMatrix< index_t > &result) const |
Indices of active (non-zero) function(s) for each point. More... | |
const gsBasis< T > & | basis (const index_t k) const |
Helper which casts and returns the k-th piece of this function set as a gsBasis. | |
uPtr | clone () |
Clone methode. Produceds a deep copy inside a uPtr. | |
virtual void | compute (const gsMatrix< T > &in, gsFuncData< T > &out) const |
Computes function data. More... | |
virtual void | computeMap (gsMapData< T > &InOut) const |
Computes map function data. More... | |
gsFuncCoordinate< T > | coord (const index_t c) const |
Returns the scalar function giving the i-th coordinate of this function. | |
gsMatrix< T > | deriv (const gsMatrix< T > &u) const |
Evaluate the derivatives,. More... | |
gsMatrix< T > | deriv2 (const gsMatrix< T > &u) const |
Evaluates the second derivatives of active (i.e., non-zero) functions at points u. More... | |
virtual T | distanceL2 (gsFunction< T > const &) const |
Computes the L2-distance between this function and the field and a function func. | |
short_t | domainDim () const |
Domain dimension, always 2 for shells. | |
gsMatrix< T > | eval (const gsMatrix< T > &u) const |
Evaluate the function,. More... | |
void | eval_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Implementation of eval_into, see gsFunction. More... | |
std::vector< gsMatrix< T > > | evalAllDers (const gsMatrix< T > &u, int n, bool sameElement=false) const |
Evaluate all derivatives upto order n,. More... | |
virtual void | evalAllDers_into (const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const |
Evaluate the nonzero functions and their derivatives up to order n at points u into result. More... | |
const gsFunction< T > & | function (const index_t k) const |
Helper which casts and returns the k-th piece of this function set as a gsFunction. | |
gsMaterialMatrixIntegrateSingle (index_t patch, gsMaterialMatrixBase< T > *materialMatrix, const gsFunctionSet< T > *deformed) | |
Constructor. | |
gsMaterialMatrixIntegrateSingle (index_t patch, gsMaterialMatrixBase< T > *materialMatrix, const gsFunctionSet< T > *undeformed, const gsFunctionSet< T > *deformed) | |
Constructor. | |
virtual void | invertPoints (const gsMatrix< T > &points, gsMatrix< T > &result, const T accuracy=1e-6, const bool useInitialPoint=false) const |
int | newtonRaphson (const gsVector< T > &value, gsVector< T > &arg, bool withSupport=true, const T accuracy=1e-6, int max_loop=100, T damping_factor=1) const |
virtual index_t | nPieces () const |
Number of pieces in the domain of definition. | |
virtual gsMatrix< T > | parameterCenter () const |
Returns a "central" point inside inside the parameter domain. | |
gsMatrix< T > | parameterCenter (const boxCorner &bc) const |
Get coordinates of the boxCorner bc in the parameter domain. | |
gsMatrix< T > | parameterCenter (const boxSide &bs) const |
Get coordinates of the midpoint of the boxSide bs in the parameter domain. | |
virtual const gsFunction & | piece (const index_t k) const |
Returns the piece(s) of the function(s) at subdomain k. | |
virtual std::ostream & | print (std::ostream &os) const |
Prints the object as a string. | |
void | recoverPoints (gsMatrix< T > &xyz, gsMatrix< T > &uv, index_t k, const T accuracy=1e-6) const |
index_t | size () const |
size More... | |
short_t | targetDim () const |
Target dimension. More... | |
Evaluation functions | |
These functions allow one to evaluate the function as well as its derivatives at one or more points in the parameter space. See also Evaluation members. | |
virtual void | eval_component_into (const gsMatrix< T > &u, const index_t comp, gsMatrix< T > &result) const |
Evaluate the function for component comp in the target dimension at points u into result. | |
virtual void | deriv_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Evaluate derivatives of the function \(f:\mathbb{R}^n\rightarrow\mathbb{R}^m\) at points u into result. More... | |
virtual void | jacobian_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Computes for each point u a block of result containing the Jacobian matrix. | |
void | div_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Computes for each point u a block of result containing the divergence matrix. | |
gsMatrix< T > | jacobian (const gsMatrix< T > &u) const |
virtual void | deriv2_into (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Evaluate second derivatives of the function at points u into result. More... | |
virtual void | hessian_into (const gsMatrix< T > &u, gsMatrix< T > &result, index_t coord=0) const |
virtual gsMatrix< T > | hessian (const gsMatrix< T > &u, index_t coord=0) const |
virtual gsMatrix< T > | laplacian (const gsMatrix< T > &u) const |
Evaluate the Laplacian at points u. More... | |
Protected Member Functions | |
gsMatrix< T > | _eval (const gsMatrix< T > &u) const |
Integrateuates the base class in 3D, but on Z=0. More... | |
gsMatrix< T > | _eval3D (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Integrateuates the base class in 3D. More... | |
T | getMoment () const |
Gets the moment based on the output type. More... | |
void | integrateZ_into (const gsMatrix< T > &u, const index_t moment, gsMatrix< T > &result) const |
Integrates through-thickness using Gauss integration. More... | |
void | multiplyLinZ_into (const gsMatrix< T > &u, const index_t moment, gsMatrix< T > &result) const |
Uses the top and bottom parts of the thickness to compute the integral exactly. More... | |
void | multiplyZ_into (const gsMatrix< T > &u, index_t moment, gsMatrix< T > &result) const |
Multiplies the evaluation at z=0 with 2.0/(moment+1) * Thalf^(moment + 1) More... | |
void | setPatch (index_t p) |
Sets the patch index. | |
Private Member Functions | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorN||_out==MaterialOutput::VectorM, gsMatrix< T > >::type | eval3D_impl (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Specialisation of eval3D for vectors. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::CauchyVectorN||_out==MaterialOutput::CauchyVectorM, gsMatrix< T > >::type | eval3D_impl (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Specialisation of eval3D for vectors. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixA||_out==MaterialOutput::MatrixB||_out==MaterialOutput::MatrixC||_out==MaterialOutput::MatrixD, gsMatrix< T > >::type | eval3D_impl (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Specialisation of eval3D for matrix. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::PStress||_out==MaterialOutput::PStressN||_out==MaterialOutput::PStressM, gsMatrix< T > >::type | eval3D_impl (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Specialisation of eval3D for vectors. | |
template<enum MaterialOutput _out> | |
std::enable_if<!(_out==MaterialOutput::VectorN||_out==MaterialOutput::VectorM||_out==MaterialOutput::CauchyVectorN||_out==MaterialOutput::CauchyVectorM||_out==MaterialOutput::MatrixA||_out==MaterialOutput::MatrixB||_out==MaterialOutput::MatrixC||_out==MaterialOutput::MatrixD||_out==MaterialOutput::PStressN||_out==MaterialOutput::PStressM), gsMatrix< T > >::type | eval3D_impl (const gsMatrix< T > &u, const gsMatrix< T > &Z) const |
Specialisation of eval3D for other types. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::Density, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for densities. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorN||_out==MaterialOutput::CauchyVectorN, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the membrane stress tensor N. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorM||_out==MaterialOutput::CauchyVectorM, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the flexural stress tensor M. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixA||_out==MaterialOutput::MatrixB||_out==MaterialOutput::MatrixC||_out==MaterialOutput::MatrixD, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the moments of the material matrices. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::PStressN||_out==MaterialOutput::PStressM, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the membrane and flexural principle stresses. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::PStrainN||_out==MaterialOutput::PStrainM, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the membrane and flexural principle stresses. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::Stretch, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the stretches. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::StretchDir, void >::type | eval_into_impl (const gsMatrix< T > &u, gsMatrix< T > &result) const |
Specialisation of eval_into for the stretch directions. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorN||_out==MaterialOutput::PStressN||_out==MaterialOutput::CauchyVectorN, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::VectorN; the moment is 0. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorM||_out==MaterialOutput::PStressM||_out==MaterialOutput::CauchyVectorM, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::VectorM; the moment is 1. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixA, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::MatrixA; the moment is 0. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixB, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::MatrixB; the moment is 1. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixC, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::MatrixC; the moment is 1. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixD, T >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput::MatrixD; the moment is 2. | |
template<enum MaterialOutput _out> | |
std::enable_if<!(_out==MaterialOutput::VectorN||_out==MaterialOutput::VectorM||_out==MaterialOutput::CauchyVectorN||_out==MaterialOutput::CauchyVectorM||_out==MaterialOutput::MatrixA||_out==MaterialOutput::MatrixB||_out==MaterialOutput::MatrixC||_out==MaterialOutput::MatrixD||_out==MaterialOutput::PStressN||_out==MaterialOutput::PStressM), index_t >::type | getMoment_impl () const |
Implementation of getMoment for MaterialOutput other than VectorN, VectorM, MatrixA, MatrixB, MatrixC, MatrixD, PStressN, PStressM. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::Density, short_t >::type | targetDim_impl () const |
Implementation of targetDim for densities. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::VectorN||_out==MaterialOutput::CauchyVectorN||_out==MaterialOutput::VectorM||_out==MaterialOutput::CauchyVectorM, short_t >::type | targetDim_impl () const |
Implementation of targetDim for stress tensors. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::MatrixA||_out==MaterialOutput::MatrixB||_out==MaterialOutput::MatrixC||_out==MaterialOutput::MatrixD, short_t >::type | targetDim_impl () const |
Implementation of targetDim for material tensors. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::PStressN||_out==MaterialOutput::PStressM||_out==MaterialOutput::PStrainN||_out==MaterialOutput::PStrainM, short_t >::type | targetDim_impl () const |
Implementation of targetDim for principal stress fields. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::Stretch, short_t >::type | targetDim_impl () const |
Implementation of targetDim for principal stretch fields. | |
template<enum MaterialOutput _out> | |
std::enable_if< _out==MaterialOutput::StretchDir, short_t >::type | targetDim_impl () const |
Implementation of targetDim for principal stress directions. | |
Integrateuates the base class in 3D, but on Z=0.
This function is primarily used in cases where the base class already integrates the material matrix or vectors
[in] | u | The evaluation points (in plane) |
Integrateuates the base class in 3D.
[in] | u | The evaluation points (in plane) |
[in] | Z | The through-thickness coordinate |
Returns the indices of active (nonzero) functions at points u, as a list of indices.
|
inlinevirtualinherited |
Indices of active (non-zero) function(s) for each point.
The columns are sorted in increasing order, if on a point there are less active then the number of rows in the result matrix (some other point has more actives) then the rest of the column is filled with 0s.
u | |
result |
Reimplemented from gsFunctionSet< T >.
|
virtualinherited |
Computes function data.
This function evaluates the functions and their derivatives at the points in and writes them in the corresponding fields of out. Which field to write (and what to compute) is controlled by the out.flags (see also gsFuncData).
The input points in are expected to be compatible with the implementation/representation of the function, i.e. they should be points inside the domain of definitition of the function
[in] | in | |
[out] | out |
Reimplemented in gsGeometry< T >, and gsConstantFunction< T >.
|
virtualinherited |
Computes map function data.
This function evaluates the functions and their derivatives at the points InOut.points and writes them in the corresponding fields of InOut. Which field to write (and what to compute) is controlled by the InOut.flags (see also gsMapData). This is intended for parametrizations only and it works on functions sets of cardinality 1 only.
[in,out] | InOut |
Evaluate the derivatives,.
Evaluates the second derivatives of active (i.e., non-zero) functions at points u.
See documentation for deriv2_into() (the one without input parameter coefs) for details.
[in] | u | Evaluation points in columns. |
Evaluate second derivatives of the function at points u into result.
Let n be the dimension of the source space ( n = domainDim() ).
Let m be the dimension of the image/target space ( m = targetDim() ).
Let N denote the number of evaluation points.
[in] | u | gsMatrix of size n x N, where each column of u represents one evaluation point. |
[out] | result | gsMatrix of size (S*m) x N, where S=n*(n+1)/2. Each column in result corresponds to one point (i.e., one column in u) and contains the following values (for n=3, m=3): \( (\partial_{xx} f^{(1)}, \partial_{yy} f^{(1)}, \partial_{zz} f^{(1)}, \partial_{xy} f^{(1)}, \partial_{xz} f^{(1)}, \partial_{yz} f^{(1)}, \partial_{xx} f^{(2)},\ldots,\partial_{yz} f^{(3)} )^T\) |
Reimplemented from gsFunctionSet< T >.
Reimplemented in gsGeometry< T >, gsFunctionExpr< T >, gsConstantFunction< T >, gsPreCICEFunction< T >, gsAffineFunction< T >, gsMappedSingleSpline< d, T >, gsGeometryTransform< T >, and gsFuncCoordinate< T >.
Evaluate derivatives of the function \(f:\mathbb{R}^n\rightarrow\mathbb{R}^m\) at points u into result.
Let n be the dimension of the source space ( n = domainDim() ).
Let m be the dimension of the image/target space ( m = targetDim() ).
Let N denote the number of evaluation points.
Let \( f:\mathbb R^2 \rightarrow \mathbb R^3 \), i.e., \( f(x,y) = ( f^{(1)}(x,y), f^{(2)}(x,y), f^{(3)}(x,y) )^T\),
and let \( u = ( u_1, \ldots, u_N) = ( (x_1,y_1)^T, \ldots, (x_N, y_N)^T )\).
Then, result is of the form
\[ \left[ \begin{array}{cccc} \partial_x f^{(1)}(u_1) & \partial_x f^{(1)}(u_2) & \ldots & \partial_x f^{(1)}(u_N) \\ \partial_y f^{(1)}(u_1) & \partial_y f^{(1)}(u_2) & \ldots & \partial_y f^{(1)}(u_N) \\ \partial_x f^{(2)}(u_1) & \partial_x f^{(2)}(u_2) & \ldots & \partial_x f^{(2)}(u_N) \\ \partial_y f^{(2)}(u_1) & \partial_y f^{(2)}(u_2) & \ldots & \partial_x f^{(2)}(u_N) \\ \partial_x f^{(3)}(u_1) & \partial_x f^{(3)}(u_2) & \ldots & \partial_x f^{(3)}(u_N)\\ \partial_y f^{(3)}(u_1) & \partial_y f^{(3)}(u_2) & \ldots & \partial_y f^{(3)}(u_N) \end{array} \right] \]
[in] | u | gsMatrix of size n x N, where each column of u represents one evaluation point. |
[out] | result | gsMatrix of size (n * m) x N. Each row of result corresponds to one component in the target space and contains the gradients for each evaluation point, as row vectors, one after the other (see above for details on the format). |
Reimplemented from gsFunctionSet< T >.
Reimplemented in gsGeometry< T >, gsFunctionExpr< T >, gsConstantFunction< T >, gsPreCICEFunction< T >, gsAffineFunction< T >, gsMappedSingleSpline< d, T >, gsGeometrySlice< T >, gsSquaredDistance< T >, gsBasisFun< T >, gsGeometryTransform< T >, and gsFuncCoordinate< T >.
Evaluate the function,.
|
inherited |
Evaluate all derivatives upto order n,.
|
virtualinherited |
Evaluate the nonzero functions and their derivatives up to order n at points u into result.
The derivatives (the 0-th derivative is the function value) are stored in a result. result is a std::vector, where result[i] is a gsMatrix which contains the i-th derivatives.
The entries in result[0], result[1], and result[2] are ordered as in eval_into(), deriv_into(), and deriv2_into(), respectively. For i > 2, the derivatives are stored in lexicographical order, e.g. for order i = 3 and dimension 2 the derivatives are stored as follows: \( \partial_{xxx}, \, \partial_{xxy}, \, \partial_{xyy}, \, \partial_{yyy}.\, \)
[in] | u | Evaluation points, each column corresponds to one evaluation point. |
[in] | n | All derivatives up to order n are computed and stored in result. |
[in,out] | result | See above for format. |
Reimplemented in gsTensorBSplineBasis< 1, T >, gsTensorBasis< d, T >, gsTensorBasis< 1, T >, gsGeometry< T >, gsMappedSingleBasis< d, T >, gsConstantFunction< T >, gsTHBSplineBasis< d, T >, gsMappedSingleSpline< d, T >, and gsSquaredDistance< T >.
|
inlineprotected |
Gets the moment based on the output type.
for VectorN, the moment is 0 VectorM, the moment is 1 (unless MatIntegrated==Constant or MatIntegrated==Integrated) MatrixA, the moment is 0 MatrixB, the moment is 1 MatrixC, the moment is 1 MatrixD, the moment is 2 PStressN,the moment is 0 PStressM,the moment is 1
|
inlinevirtualinherited |
Evaluates the Hessian (matrix of second partial derivatives) of coordinate coord at points u.
|
protected |
Integrates through-thickness using Gauss integration.
[in] | u | evaluation points (in plane) |
[in] | moment | moment to be taken |
result | the result |
|
virtualinherited |
Takes the physical points and computes the corresponding parameter values. If the point cannot be inverted (eg. is not part of the geometry) the corresponding parameter values will be undefined
Evaluate the Laplacian at points u.
By default uses central finite differences with h=0.00001
Reimplemented in gsFunctionExpr< T >.
|
protected |
Uses the top and bottom parts of the thickness to compute the integral exactly.
This function assumes that the function \( h(z,...) \) to be integrated is of the form \( h(z,...) = f(...) + z g(...)\) (no higher-order terms!). This implies that \(f(...)\) is the even part and \(z g(...)\) is the odd part of h. Writing out the thickness integral for a moment \(\alpha\) gives:
\begin{eqnarray*} \int_{-t/2}^{t/2} z^\alpha h(z,...)\:\text{d}\z &= \int_{-t/2}^{t/2} z^\alpha f(...) + z^{\alpha+1} g(...)\:\text{d}\z \\ & = \frac{z^{\alpha+1}}{\alpha+1} f(...) + \frac{z^{\alpha+2}}{\alpha+2} g(...) \bigg\vert_{t/2}^{t/2} \\ & = \frac{z^{\alpha+1}}{\alpha+1} f(...) + \frac{z^{\alpha+1}}{\alpha+2} zg(...) \bigg\vert_{t/2}^{t/2} \\ & = \frac{1}{\alpha+1} \left[ \left(\frac{t}{2}\right)^{\alpha+1} - \left(-\frac{t}{2}\right)^{\alpha+1} \right]f(...) + \frac{1}{\alpha+2}\left[ \left(\frac{t}{2}\right)^{\alpha+2} - \left(-\frac{t}{2}\right)^{\alpha+2} \right] g(...) \bigg\vert_{t/2}^{t/2} \\ \end{eqnarray*}
From this we observe that for \(\alpha\) odd, the part of \(f\) contributes, whereas for \(\alpha\) even, the \(g\) part contributes. Remember our assumption on the form of \(h(z,...)\), then we can integrate this function by evaluating the following:
\begin{eqnarray*} \int_{-t/2}^{t/2} z^\alpha h(z,...)\:\text{d}\z = \begin{dcases} \frac{1}{\alpha+1} \left[ \left(\frac{t}{2}\right)^{\alpha+1} - \left(-\frac{t}{2}\right)^{\alpha+1} \right]h(...) & \text{} if $\alpha$ is odd} \\ \frac{1}{\alpha+2}\left[ \left(\frac{t}{2}\right)^{\alpha+1} - \left(-\frac{t}{2}\right)^{\alpha+1} \right] h(...) & \text{} if $\alpha$ is even} \end{dcases} \end{eqnarray*}
[in] | u | evaluation points (in plane) |
[in] | moment | moment to be taken |
result | the result |
|
protected |
Multiplies the evaluation at z=0 with 2.0/(moment+1) * Thalf^(moment + 1)
WARNING: Recommended use only for constant functions over thickness.
The function assumes that moments are handled inside the evaluation. For example, when we want to integrate \(f(z,...) = g(...) + zh(...)\) with different moments, then for moment 0, the function assumes that \(g(...)\) is evaluated, for moment 1, the function assumes that nothing is returned and for moment 2, it assumes that \(h\) is returned.
The function is equivalent to multiplyLinZ_into when moment = 2 here and moment = 1 in multiplyLinZ_into (given that the correct function is returned).
[in] | u | evaluation points (in plane) |
[in] | moment | moment to be taken |
result | the result |
|
inherited |
Newton-Raphson method to find a solution of the equation f(arg) = value with starting vector arg. If the point cannot be inverted the corresponding parameter values will be undefined
|
inherited |
Recovers a point on the (geometry) together with its parameters uv, assuming that the k-th coordinate of the point xyz is not known (and has a random value as input argument).
|
inlinevirtualinherited |
size
Reimplemented from gsFunctionSet< T >.
Reimplemented in gsPiecewiseFunction< T >.
|
inlinevirtual |
Target dimension.
For a scalar (e.g. density) the target dimension is 1, for a vector (e.g. stress tensor in Voight notation) the target dimension is 3 and for a matrix (e.g. the material matrix) the target dimension is 9, which can be reshaped to a 3x3 matrix.
Reimplemented from gsFunctionSet< T >.