G+Smo
25.01.0
Geometry + Simulation Modules
|
This module is about solving elasticity problems on thin shells using the Kirchhoff-Love shell formulations. References for this implementation include the original work by Kiendl et. al. (2009) [I], the PhD thesis of Josef Kiendl (2011) [II], the PhD thesis of Anmol Goyal (2015) [III], the MSc thesis of Hugo Verhelst (2019) [IV]. Anmol contributed to the first Kirchhoff-Love implementation of G+Smo and Hugo to the current one.
The variational formulation for the Kirchhoff-Love shell is:
\begin{eqnarray*} \int_\Omega \mathbf{f}\cdot\mathbf{v}\ + p\mathbf{\hat{n}}:\text{d}\Omega - \int_\Omega \mathbf{n}(\mathbf{u}):\mathbf{\varepsilon}^\prime(\mathbf{u},\mathbf{v}) + \mathbf{m}(\mathbf{u}):\mathbf{\kappa}^\prime(\mathbf{u},\mathbf{v}) \text{d}\Omega = 0 \end{eqnarray*}
The left-hand side of this formulation in fact is the residual of the problem, being the balance between external and internal forces. In this equation, \(\Omega\) is the domain, \( \mathbf{f} \) is a vector with a distributed load acting on the mid-plane of the shell, \( \mathbf{v} \) is the three-dimensional test function, \( p\) is a follower pressure acting on the shell, \( \mathbf{\hat{n}}\) is the shell normal, \( n \) is the normal-force tensor, \( \mathbf{\varepsilon}^\prime \) is the variation of the membrane strain tensor, \( \mathbf{m} \) is the bending moment tensor, \( \mathbf{\kappa}^\prime \) is the variation of the bending strain tensor and \(\mathbf{u} \) is the displacement of the mid-plane of the shell; thus the solution to the problem.
In order to solve the variational formulation for \( \mathbf{u} \), the second variation is derived, such that a lineararized form can be found or such that the Jacobian and for Newton iterations can be found. The second variation is:
\begin{eqnarray*} j(\mathbf{u},\mathbf{v},\mathbf{w}) = \int_\Omega \mathbf{n}(\mathbf{u}):\mathbf{\varepsilon}^{\prime\prime}(\mathbf{u},\mathbf{v},\mathbf{v}) + \mathbf{n}^\prime(\mathbf{u},\mathbf{v}):\mathbf{\varepsilon}^{\prime}(\mathbf{u},\mathbf{v}) + \mathbf{m}(\mathbf{u}):\mathbf{\kappa}^{\prime\prime}(\mathbf{u},\mathbf{v},\mathbf{w}) + \mathbf{m}^\prime(\mathbf{u},\mathbf{v}):\mathbf{\kappa}^\prime(\mathbf{u},\mathbf{v}) \text{d}\Omega - \int_\Omega p \mathbf{v}\cdot\mathbf{\hat{n}}^\prime\text{d}\Omega \end{eqnarray*}
In this equation, the primed ( \(\cdot^\prime\)) expressions again denote the first variation and the double-primed ( \(\cdot^{\prime\prime}\)) expressions denote second variations.
From the above equations, a system of equations can be assembled, which will later be done by the gsExprAssembler . In case of a lineararized system, only the single-primed expressions are non-zero, together with the term containing the external load.
The expressions for the strains, normal foce and bending moment are as follows (see sec. 3.2 and 3.3 of [III]):
\begin{align*} \varepsilon_{\alpha\beta} &= \frac{\partial\mathbf{c}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{c}}{\partial\theta_\beta} - \frac{\partial\mathbf{C}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{C}}{\partial\theta_\beta}\\ \varepsilon^\prime_{\alpha\beta} &= \frac{1}{2}\frac{\partial\mathbf{v}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{c}}{\partial\theta_\beta} + \frac{1}{2}\frac{\partial\mathbf{c}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{v}}{\partial\theta_\beta} \\ \kappa_{\alpha\beta} &= \frac{\partial^2\mathbf{C}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{N}} - \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}\\ \kappa^\prime_{\alpha\beta} &= \frac{\partial^2\mathbf{v}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}} + \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{u})\\ \mathbf{\hat{n}}^\prime(\mathbf{v}) &= \mathbf{m}_{\mathbf{v}} - (\mathbf{\hat{n}}\cdot \mathbf{m}_{\mathbf{v}})\mathbf{\hat{n}} \\ \mathbf{m}_{\mathbf{v}} &= \frac{1}{\vert \frac{\partial\mathbf{c}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2}\vert } \left( \frac{\partial\mathbf{v}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2} + \frac{\partial\mathbf{c}}{\partial\theta_1} \times \frac{\partial\mathbf{v}}{\partial\theta_2} \right)\\ \varepsilon^{\prime\prime}_{\alpha\beta} &= \frac{\partial\mathbf{v}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{w}}{\partial\theta_\beta}\\ \kappa^{\prime\prime}_{\alpha\beta} &= \frac{\partial^2\mathbf{v}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{w}) + \frac{\partial^2\mathbf{w}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{v}) + \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^{\prime\prime}(\mathbf{v},\mathbf{w})\\ \mathbf{\hat{n}}^{\prime\prime}(\mathbf{v},\mathbf{w}) &= \mathbf{m}_{\mathbf{v}}^\prime - ( \mathbf{m}_{\mathbf{v}}\cdot\mathbf{\hat{n}}^\prime(\mathbf{w}) + \mathbf{\hat{n}}\cdot\mathbf{m}_{\mathbf{v}}^\prime(\mathbf{w}) )\mathbf{\hat{n}} - ( \mathbf{\hat{n}}\cdot \mathbf{m}_{\mathbf{v}} )\mathbf{\hat{n}}^\prime(\mathbf{w})\\ \mathbf{m}_{\mathbf{v}}^{\prime}(\mathbf{w}) &= \mathbf{m}_{\mathbf{vw}}-(\mathbf{n}\cdot\mathbf{m}_{\mathbf{w}})\mathbf{m}_{\mathbf{w}}\\ \mathbf{m}_{\mathbf{vw}} &= \frac{1}{\vert \frac{\partial\mathbf{c}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2}\vert } \left( \frac{\partial\mathbf{v}}{\partial\theta_1}\times \frac{\partial\mathbf{w}}{\partial\theta_2} + \frac{\partial\mathbf{w}}{\partial\theta_1} \times \frac{\partial\mathbf{v}}{\partial\theta_2} \right)\\ n_{\alpha\beta} &= t \mathcal{C}^{\alpha\beta\gamma\delta} \varepsilon_{\alpha\beta}\\ n_{\alpha\beta}^\prime &= \mathcal{C}^{\alpha\beta\gamma\delta} \varepsilon_{\alpha\beta}^{\prime}\\ m_{\alpha\beta} &= t \mathcal{C}^{\alpha\beta\gamma\delta} \kappa{\alpha\beta}\\ m_{\alpha\beta}^\prime &= \mathcal{C}^{\alpha\beta\gamma\delta} \kappa_{\alpha\beta}^{\prime} \end{align*}
Here, \( t\) is the thickness of the shell and \( \mathcal{C}^{\alpha\beta\gamma\delta}\) is the material tensor (see [III] eq. 3.15).
The Kirchhoff-Love shell is implemented in the gsThinShellAssembler class and the constitutive relations are included in separate classes based on gsMaterialMatrixBase.
The gsThinShellAssembler is a class that implements the kirchhoff-Love_example.cpp and adds advanced functionalities. That is, the class uses the gsExprAssembler to assemble matrices and vectors for shell modelling. Key features of the class are:
The expressions for the assembly of the system of equations are partially coming from gsExpressions (e.g. the jac_expr, the grad_expr) and shell-specific expressions are implemented in the gsThinShellUtils.h. Furthermore, gsThinShellFunctions.h contains a helper-class for plotting the stress field within the shell.
The material relations are handled in separate classes, derived from gsMaterialMatrixBase. The material matrix generally behaves as a gsFunctionSet with implemented evaluation functions. The quantities that can be computed using material matrices are the thickness, the density, the (membrane/bending) stress, the force/moment through-thickness and principal stretches or stresses. Helper classes are employed to evaluate the stress or material tensor at a point or to find the integral over the thickness. The constitutive relations currently implemented are:
To evaluate (the integral of) any material quantity, the following classes can be used:
Helper functions for defining material matrices are provided in getMaterialMatrix.h, which constructs a pointer to a material matrix based on a gsOptionsList
Typically, the aforementioned classes are used by first defining a gsMaterialMatrix and passing this to a gsThinShellAssembler.
In the folder gsKLShell/tutorials
, some tutorials are provided, explaining the use of the gsKLShell module. The tutorials can be compiled using the target gsKLShell-tutorials
. The available tutorials are:
Few examples are provided in this module
[I] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner, "Isogeometric shell analysis with Kirchhoff–Love elements," Comput. Methods Appl. Mech. Eng., vol. 198, no. 49–52, pp. 3902–3914, Nov. 2009.
[II] J. Kiendl, "Isogeometric analysis and shape optimal design of shell structures," Technische Universität München, 2011.
[III] A. Goyal, "Isogeometric Shell Discretizations for Flexible Multibody Dynamics," Technische Universität Kaiserslautern, 2015.
[IV] H. M. Verhelst, "Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An application of Isogeometric Structural Analysis for Post-Buckling Analyses," Delft University of Technology, 2019.
[8] H. M. Verhelst, "Isogeometric Analysis of Wrinkling.", PhD Thesis, TU Delft, 2024
[7] H.M. Verhelst, A. Mantzaflaris, M. Möller, J.H. Den Besten, "Goal-Adaptive Meshing of Isogeometric Kirchhoff-Love Shells", Engineering with Computers, 2024
[6] H.M. Verhelst, J.H. Den Besten, M. Möller, "An adaptive parallel arc-length method", Computers & Structures, 2024
[5] H.M. Verhelst, P. Weinmüller, A. Mantzaflaris, T. Takacs, D. Toshniwal, "A comparison of smooth basis constructions for isogeometric analysis", Computer Methods in Applied Mechanics and Engineering, 2024
[4] A. Farahat, H.M. Verhelst, J. Kiendl, M. Kapl, "Isogeometric analysis for multi-patch structured Kirchhoff–Love shells", Computer Methods in Applied Mechanics and Engineering, 2023
[3] H.M. Verhelst, M. Möller, J.H. Den Besten, A. Mantzaflaris, M.L. Kaminski, "Stretch-based hyperelastic material formulations for isogeometric Kirchhoff–Love shells with application to wrinkling", Computer-Aided Design. 2021 Oct 1;139:103075.
[2] H.M. Verhelst, M. Möller, J.H. Den Besten, F.J. Vermolen, M.L. Kaminski, "Equilibrium Path Analysis Including Bifurcations with an Arc-Length Method Avoiding A Priori Perturbations", Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September 30-October 4. Cham: Springer International Publishing, 2020.
[1] H.M. Verhelst, "Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An application of Isogeometric Structural Analysis for Post-Buckling Analyses.", MSc. Thesis, TU Delft, 2019.
Author: Hugo Verhelst – h.m.v.nosp@m.erhe.nosp@m.lst@t.nosp@m.udel.nosp@m.ft.nl
Classes | |
struct | decodeMat_id< id > |
Decodes the material model and implementation. More... | |
struct | encodeMat_id< material, implementation > |
Encodes the material model and implementation. More... | |
class | gsMaterialMatrixBase< T > |
This class defines the base class for material matrices. More... | |
class | gsMaterialMatrixBaseDim< dim, T > |
This class defines the base class for material matrices. More... | |
class | gsMaterialMatrixComposite< dim, T > |
This class defines a linear material laminate. More... | |
class | gsMaterialMatrixContainer< T > |
This class serves as the evaluator of material matrices, based on gsMaterialMatrixBase. More... | |
class | gsMaterialMatrixEvalSingle< T, out > |
This class serves as the evaluator of material matrices, based on gsMaterialMatrixBase. More... | |
class | gsMaterialMatrixIntegrateSingle< T, out > |
This class serves as the integrator of material matrices, based on gsMaterialMatrixBase. More... | |
class | gsMaterialMatrixNonlinear< dim, T, matId, comp, mat, imp > |
This class defines hyperelastic material matrices. More... | |
class | gsShellStressFunction< T > |
Compute Cauchy stresses for a previously computed/defined displacement field. Can be pushed into gsPiecewiseFunction to construct gsField for visualization in Paraview. More... | |
class | gsThinShellAssembler< d, T, bending > |
Assembles the system matrix and vectors for 2D and 3D shell problems, including geometric nonlinearities and loading nonlinearities. The material nonlinearities are handled by the gsMaterialMatrixIntegrate class. More... | |
class | gsThinShellAssemblerBase< T > |
Base class for the gsThinShellAssembler. More... | |
class | gsThinShellAssemblerDWRBase< T > |
Base class for the gsThinShellAssembler. More... | |
struct | stress_type |
Specifies the type of stresses to compute. More... | |
Enumerations | |
enum class | Implementation : short_t |
This class describes the way material models are implemented. More... | |
enum class | Material : short_t |
This class describes a material model. | |
enum class | MaterialOutput : short_t |
This class describes the output type. More... | |
enum class | MatIntegration : short_t |
This class describes if an object is integrated through-thickness or not. More... | |
Functions | |
template<short_t d, class T > | |
gsMaterialMatrixBase< T >::uPtr | getMaterialMatrix (const gsMultiPatch< T > &mp, const gsFunctionSet< T > &thickness, const std::vector< gsFunctionSet< T > * > ¶meters, const gsFunctionSet< T > &rho, const gsOptionList &options) |
Gets a material matrix based on options. | |
template<short_t d, class T > | |
gsMaterialMatrixBase< T >::uPtr | getMaterialMatrix (const gsMultiPatch< T > &mp, const gsFunctionSet< T > &thickness, const std::vector< gsFunctionSet< T > * > ¶meters, const gsOptionList &options) |
Gets a material matrix based on options. | |
|
strong |
This class describes the way material models are implemented.
Composite: laminate material model Analytical: The expressions for Cijkl and Sij have to be provided in closed form Generalized: Uses a generalized way, where only the derivatives of psi have to be implemented Spectral: Implementation based on derivatives of psi w.r.t. principal stretches
|
strong |
This class describes the output type.
Generic: unspecified output type Density VectorN: Membrane forces VectorM: Bending moments MatrixA: 0th order moment of the differential of the material matrix w.r.t. membrane strains MatrixB: 1st order moment of the differential of the material matrix w.r.t. membrane strains MatrixC: 0th order moment of the differential of the material matrix w.r.t. bending strains MatrixD: 1st order moment of the differential of the material matrix w.r.t. bending strains PStressN: membrane principal stress PStressN: bending principal stress Stretch: Principal stretch StretchDir: Principal stretch directions
|
strong |
This class describes if an object is integrated through-thickness or not.
NotIntegrated: The object has to be integrated Integrated: The object is integrated Constant: The object is constant through thickness, but is not integrated Linear: The object is linear through thickness, but is not integrated
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix | ( | const gsMultiPatch< T > & | mp, |
const gsFunctionSet< T > & | thickness, | ||
const std::vector< gsFunctionSet< T > * > & | parameters, | ||
const gsFunctionSet< T > & | rho, | ||
const gsOptionList & | options | ||
) |
Gets a material matrix based on options.
[in] | mp | The undeformed geometry |
[in] | thickness | The thickness |
[in] | parameters | The parameters |
[in] | rho | The density |
[in] | options | The option list |
d | The dimension of the problem (2 = planar, 3 = surface) |
T | Real type |
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix | ( | const gsMultiPatch< T > & | mp, |
const gsFunctionSet< T > & | thickness, | ||
const std::vector< gsFunctionSet< T > * > & | parameters, | ||
const gsOptionList & | options | ||
) |
Gets a material matrix based on options.
[in] | mp | The undeformed geometry |
[in] | thickness | The thickness |
[in] | parameters | The parameters |
[in] | options | The option list |
d | The dimension of the problem (2 = planar, 3 = surface) |
T | Real type |