G+Smo  25.01.0
Geometry + Simulation Modules
 
Loading...
Searching...
No Matches
Kirchhoff-Love shell module

Detailed Description

This module is about solving elasticity problems on thin shells using the Kirchhoff-Love shell formulations. References for this implementation include the original work by Kiendl et. al. (2009) [I], the PhD thesis of Josef Kiendl (2011) [II], the PhD thesis of Anmol Goyal (2015) [III], the MSc thesis of Hugo Verhelst (2019) [IV]. Anmol contributed to the first Kirchhoff-Love implementation of G+Smo and Hugo to the current one.

Governing Equations

The variational formulation for the Kirchhoff-Love shell is:

\begin{eqnarray*} \int_\Omega \mathbf{f}\cdot\mathbf{v}\ + p\mathbf{\hat{n}}:\text{d}\Omega - \int_\Omega \mathbf{n}(\mathbf{u}):\mathbf{\varepsilon}^\prime(\mathbf{u},\mathbf{v}) + \mathbf{m}(\mathbf{u}):\mathbf{\kappa}^\prime(\mathbf{u},\mathbf{v}) \text{d}\Omega = 0 \end{eqnarray*}

The left-hand side of this formulation in fact is the residual of the problem, being the balance between external and internal forces. In this equation, \(\Omega\) is the domain, \( \mathbf{f} \) is a vector with a distributed load acting on the mid-plane of the shell, \( \mathbf{v} \) is the three-dimensional test function, \( p\) is a follower pressure acting on the shell, \( \mathbf{\hat{n}}\) is the shell normal, \( n \) is the normal-force tensor, \( \mathbf{\varepsilon}^\prime \) is the variation of the membrane strain tensor, \( \mathbf{m} \) is the bending moment tensor, \( \mathbf{\kappa}^\prime \) is the variation of the bending strain tensor and \(\mathbf{u} \) is the displacement of the mid-plane of the shell; thus the solution to the problem.

In order to solve the variational formulation for \( \mathbf{u} \), the second variation is derived, such that a lineararized form can be found or such that the Jacobian and for Newton iterations can be found. The second variation is:

\begin{eqnarray*} j(\mathbf{u},\mathbf{v},\mathbf{w}) = \int_\Omega \mathbf{n}(\mathbf{u}):\mathbf{\varepsilon}^{\prime\prime}(\mathbf{u},\mathbf{v},\mathbf{v}) + \mathbf{n}^\prime(\mathbf{u},\mathbf{v}):\mathbf{\varepsilon}^{\prime}(\mathbf{u},\mathbf{v}) + \mathbf{m}(\mathbf{u}):\mathbf{\kappa}^{\prime\prime}(\mathbf{u},\mathbf{v},\mathbf{w}) + \mathbf{m}^\prime(\mathbf{u},\mathbf{v}):\mathbf{\kappa}^\prime(\mathbf{u},\mathbf{v}) \text{d}\Omega - \int_\Omega p \mathbf{v}\cdot\mathbf{\hat{n}}^\prime\text{d}\Omega \end{eqnarray*}

In this equation, the primed ( \(\cdot^\prime\)) expressions again denote the first variation and the double-primed ( \(\cdot^{\prime\prime}\)) expressions denote second variations.

From the above equations, a system of equations can be assembled, which will later be done by the gsExprAssembler . In case of a lineararized system, only the single-primed expressions are non-zero, together with the term containing the external load.

The expressions for the strains, normal foce and bending moment are as follows (see sec. 3.2 and 3.3 of [III]):

\begin{align*} \varepsilon_{\alpha\beta} &= \frac{\partial\mathbf{c}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{c}}{\partial\theta_\beta} - \frac{\partial\mathbf{C}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{C}}{\partial\theta_\beta}\\ \varepsilon^\prime_{\alpha\beta} &= \frac{1}{2}\frac{\partial\mathbf{v}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{c}}{\partial\theta_\beta} + \frac{1}{2}\frac{\partial\mathbf{c}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{v}}{\partial\theta_\beta} \\ \kappa_{\alpha\beta} &= \frac{\partial^2\mathbf{C}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{N}} - \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}\\ \kappa^\prime_{\alpha\beta} &= \frac{\partial^2\mathbf{v}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}} + \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{u})\\ \mathbf{\hat{n}}^\prime(\mathbf{v}) &= \mathbf{m}_{\mathbf{v}} - (\mathbf{\hat{n}}\cdot \mathbf{m}_{\mathbf{v}})\mathbf{\hat{n}} \\ \mathbf{m}_{\mathbf{v}} &= \frac{1}{\vert \frac{\partial\mathbf{c}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2}\vert } \left( \frac{\partial\mathbf{v}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2} + \frac{\partial\mathbf{c}}{\partial\theta_1} \times \frac{\partial\mathbf{v}}{\partial\theta_2} \right)\\ \varepsilon^{\prime\prime}_{\alpha\beta} &= \frac{\partial\mathbf{v}}{\partial\theta_\alpha}\cdot\frac{\partial\mathbf{w}}{\partial\theta_\beta}\\ \kappa^{\prime\prime}_{\alpha\beta} &= \frac{\partial^2\mathbf{v}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{w}) + \frac{\partial^2\mathbf{w}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^\prime(\mathbf{v}) + \frac{\partial^2\mathbf{c}}{\partial\theta_\alpha\partial\theta_\beta}\cdot\mathbf{\hat{n}}^{\prime\prime}(\mathbf{v},\mathbf{w})\\ \mathbf{\hat{n}}^{\prime\prime}(\mathbf{v},\mathbf{w}) &= \mathbf{m}_{\mathbf{v}}^\prime - ( \mathbf{m}_{\mathbf{v}}\cdot\mathbf{\hat{n}}^\prime(\mathbf{w}) + \mathbf{\hat{n}}\cdot\mathbf{m}_{\mathbf{v}}^\prime(\mathbf{w}) )\mathbf{\hat{n}} - ( \mathbf{\hat{n}}\cdot \mathbf{m}_{\mathbf{v}} )\mathbf{\hat{n}}^\prime(\mathbf{w})\\ \mathbf{m}_{\mathbf{v}}^{\prime}(\mathbf{w}) &= \mathbf{m}_{\mathbf{vw}}-(\mathbf{n}\cdot\mathbf{m}_{\mathbf{w}})\mathbf{m}_{\mathbf{w}}\\ \mathbf{m}_{\mathbf{vw}} &= \frac{1}{\vert \frac{\partial\mathbf{c}}{\partial\theta_1}\times \frac{\partial\mathbf{c}}{\partial\theta_2}\vert } \left( \frac{\partial\mathbf{v}}{\partial\theta_1}\times \frac{\partial\mathbf{w}}{\partial\theta_2} + \frac{\partial\mathbf{w}}{\partial\theta_1} \times \frac{\partial\mathbf{v}}{\partial\theta_2} \right)\\ n_{\alpha\beta} &= t \mathcal{C}^{\alpha\beta\gamma\delta} \varepsilon_{\alpha\beta}\\ n_{\alpha\beta}^\prime &= \mathcal{C}^{\alpha\beta\gamma\delta} \varepsilon_{\alpha\beta}^{\prime}\\ m_{\alpha\beta} &= t \mathcal{C}^{\alpha\beta\gamma\delta} \kappa{\alpha\beta}\\ m_{\alpha\beta}^\prime &= \mathcal{C}^{\alpha\beta\gamma\delta} \kappa_{\alpha\beta}^{\prime} \end{align*}

Here, \( t\) is the thickness of the shell and \( \mathcal{C}^{\alpha\beta\gamma\delta}\) is the material tensor (see [III] eq. 3.15).

Implementation

The Kirchhoff-Love shell is implemented in the gsThinShellAssembler class and the constitutive relations are included in separate classes based on gsMaterialMatrixBase.

The gsThinShellAssembler

The gsThinShellAssembler is a class that implements the kirchhoff-Love_example.cpp and adds advanced functionalities. That is, the class uses the gsExprAssembler to assemble matrices and vectors for shell modelling. Key features of the class are:

The expressions for the assembly of the system of equations are partially coming from gsExpressions (e.g. the jac_expr, the grad_expr) and shell-specific expressions are implemented in the gsThinShellUtils.h. Furthermore, gsThinShellFunctions.h contains a helper-class for plotting the stress field within the shell.

The gsMaterialMatrixBase

The material relations are handled in separate classes, derived from gsMaterialMatrixBase. The material matrix generally behaves as a gsFunctionSet with implemented evaluation functions. The quantities that can be computed using material matrices are the thickness, the density, the (membrane/bending) stress, the force/moment through-thickness and principal stretches or stresses. Helper classes are employed to evaluate the stress or material tensor at a point or to find the integral over the thickness. The constitutive relations currently implemented are:

To evaluate (the integral of) any material quantity, the following classes can be used:

Helper functions for defining material matrices are provided in getMaterialMatrix.h, which constructs a pointer to a material matrix based on a gsOptionsList

Use of the classes

Typically, the aforementioned classes are used by first defining a gsMaterialMatrix and passing this to a gsThinShellAssembler.

// Define the material matrix options
options.addInt("Material","Material model: (0): SvK | (1): NH | (2): NH_ext | (3): MR | (4): Ogden",0);
options.addInt("Implementation","Implementation: (0): Composites | (1): Analytical | (2): Generalized | (3): Spectral",1);
// Construct a material matrix pointer, for a matrix with geometric dimension DIM and T as a double type
gsMaterialMatrixBase<T> * materialMatrix = getMaterialMatrix<DIM,T>(mp,t,parameters,rho,options);
// Construct a gsThinShellAssembler class with geometric dimension DIM, T as double type and the flag BENDING to specify whether bending stiffness should be taken into account. The
gsThinShellAssemblerBase<real_t>* assembler;
assembler = new gsThinShellAssembler<DIM,T, BENDING>(
geom,
basis,
boundary_conditions,
force,
materialMatrix);
// Call assembly routines:
assembler->assemble();
// Stiffness matrix
gsSparseMatrix<T> K = assember->matrix();
// External force vector
gsVector<T> vector = assember->rhs();
// Mass matrix
assembler->assembleMass();
gsSparseMatrix<T> M = assember->matrix();
// Mass matrix lumped into a vector
assembler->assembleMass(true);
gsSparseMatrix<T> M = assember->rhs();
// Jacobian
assembler->assembleMatrix(deformed_geometry);
gsSparseMatrix<T> K_NL = assember->matrix();
// Residual
assembler->assembleVector(deformed_geometry);
gsVector<T> R = assember->rhs();

Tutorials

In the folder gsKLShell/tutorials, some tutorials are provided, explaining the use of the gsKLShell module. The tutorials can be compiled using the target gsKLShell-tutorials. The available tutorials are:

  1. Tutorial: Linear Kirchhoff-Love shell analysis
  2. Tutorial: Non-Linear Kirchhoff-Love shell analysis

Examples

Few examples are provided in this module

References

[I] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner, "Isogeometric shell analysis with Kirchhoff–Love elements," Comput. Methods Appl. Mech. Eng., vol. 198, no. 49–52, pp. 3902–3914, Nov. 2009.

[II] J. Kiendl, "Isogeometric analysis and shape optimal design of shell structures," Technische Universität München, 2011.

[III] A. Goyal, "Isogeometric Shell Discretizations for Flexible Multibody Dynamics," Technische Universität Kaiserslautern, 2015.

[IV] H. M. Verhelst, "Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An application of Isogeometric Structural Analysis for Post-Buckling Analyses," Delft University of Technology, 2019.

Publications

[8] H. M. Verhelst, "Isogeometric Analysis of Wrinkling.", PhD Thesis, TU Delft, 2024

[7] H.M. Verhelst, A. Mantzaflaris, M. Möller, J.H. Den Besten, "Goal-Adaptive Meshing of Isogeometric Kirchhoff-Love Shells", Engineering with Computers, 2024

[6] H.M. Verhelst, J.H. Den Besten, M. Möller, "An adaptive parallel arc-length method", Computers & Structures, 2024

[5] H.M. Verhelst, P. Weinmüller, A. Mantzaflaris, T. Takacs, D. Toshniwal, "A comparison of smooth basis constructions for isogeometric analysis", Computer Methods in Applied Mechanics and Engineering, 2024

[4] A. Farahat, H.M. Verhelst, J. Kiendl, M. Kapl, "Isogeometric analysis for multi-patch structured Kirchhoff–Love shells", Computer Methods in Applied Mechanics and Engineering, 2023

[3] H.M. Verhelst, M. Möller, J.H. Den Besten, A. Mantzaflaris, M.L. Kaminski, "Stretch-based hyperelastic material formulations for isogeometric Kirchhoff–Love shells with application to wrinkling", Computer-Aided Design. 2021 Oct 1;139:103075.

[2] H.M. Verhelst, M. Möller, J.H. Den Besten, F.J. Vermolen, M.L. Kaminski, "Equilibrium Path Analysis Including Bifurcations with an Arc-Length Method Avoiding A Priori Perturbations", Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September 30-October 4. Cham: Springer International Publishing, 2020.

[1] H.M. Verhelst, "Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An application of Isogeometric Structural Analysis for Post-Buckling Analyses.", MSc. Thesis, TU Delft, 2019.

Contact

Author: Hugo Verhelst – h.m.v.nosp@m.erhe.nosp@m.lst@t.nosp@m.udel.nosp@m.ft.nl

Classes

struct  decodeMat_id< id >
 Decodes the material model and implementation. More...
 
struct  encodeMat_id< material, implementation >
 Encodes the material model and implementation. More...
 
class  gsMaterialMatrixBase< T >
 This class defines the base class for material matrices. More...
 
class  gsMaterialMatrixBaseDim< dim, T >
 This class defines the base class for material matrices. More...
 
class  gsMaterialMatrixComposite< dim, T >
 This class defines a linear material laminate. More...
 
class  gsMaterialMatrixContainer< T >
 This class serves as the evaluator of material matrices, based on gsMaterialMatrixBase. More...
 
class  gsMaterialMatrixEvalSingle< T, out >
 This class serves as the evaluator of material matrices, based on gsMaterialMatrixBase. More...
 
class  gsMaterialMatrixIntegrateSingle< T, out >
 This class serves as the integrator of material matrices, based on gsMaterialMatrixBase. More...
 
class  gsMaterialMatrixNonlinear< dim, T, matId, comp, mat, imp >
 This class defines hyperelastic material matrices. More...
 
class  gsShellStressFunction< T >
 Compute Cauchy stresses for a previously computed/defined displacement field. Can be pushed into gsPiecewiseFunction to construct gsField for visualization in Paraview. More...
 
class  gsThinShellAssembler< d, T, bending >
 Assembles the system matrix and vectors for 2D and 3D shell problems, including geometric nonlinearities and loading nonlinearities. The material nonlinearities are handled by the gsMaterialMatrixIntegrate class. More...
 
class  gsThinShellAssemblerBase< T >
 Base class for the gsThinShellAssembler. More...
 
class  gsThinShellAssemblerDWRBase< T >
 Base class for the gsThinShellAssembler. More...
 
struct  stress_type
 Specifies the type of stresses to compute. More...
 

Enumerations

enum class  Implementation : short_t
 This class describes the way material models are implemented. More...
 
enum class  Material : short_t
 This class describes a material model.
 
enum class  MaterialOutput : short_t
 This class describes the output type. More...
 
enum class  MatIntegration : short_t
 This class describes if an object is integrated through-thickness or not. More...
 

Functions

template<short_t d, class T >
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix (const gsMultiPatch< T > &mp, const gsFunctionSet< T > &thickness, const std::vector< gsFunctionSet< T > * > &parameters, const gsFunctionSet< T > &rho, const gsOptionList &options)
 Gets a material matrix based on options.
 
template<short_t d, class T >
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix (const gsMultiPatch< T > &mp, const gsFunctionSet< T > &thickness, const std::vector< gsFunctionSet< T > * > &parameters, const gsOptionList &options)
 Gets a material matrix based on options.
 

Enumeration Type Documentation

◆ Implementation

enum class Implementation : short_t
strong

This class describes the way material models are implemented.

Composite: laminate material model Analytical: The expressions for Cijkl and Sij have to be provided in closed form Generalized: Uses a generalized way, where only the derivatives of psi have to be implemented Spectral: Implementation based on derivatives of psi w.r.t. principal stretches

◆ MaterialOutput

enum class MaterialOutput : short_t
strong

This class describes the output type.

Generic: unspecified output type Density VectorN: Membrane forces VectorM: Bending moments MatrixA: 0th order moment of the differential of the material matrix w.r.t. membrane strains MatrixB: 1st order moment of the differential of the material matrix w.r.t. membrane strains MatrixC: 0th order moment of the differential of the material matrix w.r.t. bending strains MatrixD: 1st order moment of the differential of the material matrix w.r.t. bending strains PStressN: membrane principal stress PStressN: bending principal stress Stretch: Principal stretch StretchDir: Principal stretch directions

◆ MatIntegration

enum class MatIntegration : short_t
strong

This class describes if an object is integrated through-thickness or not.

NotIntegrated: The object has to be integrated Integrated: The object is integrated Constant: The object is constant through thickness, but is not integrated Linear: The object is linear through thickness, but is not integrated

Function Documentation

◆ getMaterialMatrix() [1/2]

template<short_t d, class T >
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix ( const gsMultiPatch< T > &  mp,
const gsFunctionSet< T > &  thickness,
const std::vector< gsFunctionSet< T > * > &  parameters,
const gsFunctionSet< T > &  rho,
const gsOptionList options 
)

Gets a material matrix based on options.

Parameters
[in]mpThe undeformed geometry
[in]thicknessThe thickness
[in]parametersThe parameters
[in]rhoThe density
[in]optionsThe option list
Template Parameters
dThe dimension of the problem (2 = planar, 3 = surface)
TReal type
Returns
The material matrix.

◆ getMaterialMatrix() [2/2]

template<short_t d, class T >
gsMaterialMatrixBase< T >::uPtr getMaterialMatrix ( const gsMultiPatch< T > &  mp,
const gsFunctionSet< T > &  thickness,
const std::vector< gsFunctionSet< T > * > &  parameters,
const gsOptionList options 
)

Gets a material matrix based on options.

Parameters
[in]mpThe undeformed geometry
[in]thicknessThe thickness
[in]parametersThe parameters
[in]optionsThe option list
Template Parameters
dThe dimension of the problem (2 = planar, 3 = surface)
TReal type
Returns
The material matrix.