G+Smo  25.01.0
Geometry + Simulation Modules
 
Loading...
Searching...
No Matches
gsTensorBSpline< d, T > Class Template Referenceabstract

Detailed Description

template<short_t d, class T>
class gismo::gsTensorBSpline< d, T >

A tensor product of d B-spline functions, with arbitrary target dimension.

This is the geometry type associated with gsTensorBSplineBasis.

Template Parameters
dthe parametric dimension of the tensor product
Tcoefficient type
+ Inheritance diagram for gsTensorBSpline< d, T >:
+ Collaboration diagram for gsTensorBSpline< d, T >:

Public Types

typedef gsBSplineTraits< static_cast< short_t >(d-1), T >::Basis BoundaryBasisType
 Associated Boundary basis type.
 
typedef gsBSplineTraits< static_cast< short_t >(d-1), T >::Geometry BoundaryGeometryType
 Associated Boundary basis type.
 
typedef gsBSplineBasis< T > Family_t
 Family type.
 
typedef memory::shared_ptr< gsTensorBSplinePtr
 Shared pointer for gsTensorBSpline.
 
typedef memory::unique_ptr< gsTensorBSplineuPtr
 Unique pointer for gsTensorBSpline.
 

Public Member Functions

gsMatrix< index_tactive (const gsMatrix< T > &u) const
 Returns the indices of active (nonzero) functions at points u, as a list of indices.
 
void active_into (const gsMatrix< T > &u, gsMatrix< index_t > &result) const
 Indices of active (non-zero) function(s) for each point.
 
const gsBasis< T > & basis (const index_t k) const
 Helper which casts and returns the k-th piece of this function set as a gsBasis.
 
uPtr clone ()
 Clone methode. Produceds a deep copy inside a uPtr.
 
closestPointTo (const gsVector< T > &pt, gsVector< T > &result, const T accuracy=1e-6, const bool useInitialPoint=false) const
 
virtual void computeMap (gsMapData< T > &InOut) const
 Computes map function data.
 
short_t degree (const unsigned &i) const
 Returns the degree of the basis wrt direction i.
 
void degreeElevate (short_t const i=1, short_t const dir=-1)
 Elevate the degree by the given amount i for the direction dir. If dir is -1 then degree elevation is done for all directions. Uses gsBasis<T>::degreeElevate.
 
gsMatrix< T > deriv (const gsMatrix< T > &u) const
 Evaluate the derivatives,.
 
gsMatrix< T > deriv2 (const gsMatrix< T > &u) const
 Evaluates the second derivatives of active (i.e., non-zero) functions at points u.
 
directedHausdorffDistance (const gsGeometry &other, const index_t nsamples=1000, const T accuracy=1e-6) const
 
virtual T distanceL2 (gsFunction< T > const &) const
 Computes the L2-distance between this function and the field and a function func.
 
gsMatrix< T > eval (const gsMatrix< T > &u) const
 Evaluate the function,.
 
std::vector< gsMatrix< T > > evalAllDers (const gsMatrix< T > &u, int n, bool sameElement=false) const
 Evaluate all derivatives upto order n,.
 
void findCorner (const gsMatrix< T > &v, gsVector< index_t, d > &curr, T tol=1e-3)
 returns the tensor-index curr of the corner control point v, or an invalid index if the corner is not found within the tolerance tol
 
const gsFunction< T > & function (const index_t k) const
 Helper which casts and returns the k-th piece of this function set as a gsFunction.
 
gsGeometrySlice< T > getIsoParametricSlice (index_t dir_fixed, T par) const
 
 gsTensorBSpline ()
 Default empty constructor.
 
 gsTensorBSpline (const Basis &basis, gsMatrix< T > coefs)
 Construct B-Spline by basis functions and coefficient matrix.
 
 gsTensorBSpline (gsMatrix< T > const &corner, KnotVectorType KV1, KnotVectorType KV2)
 
template<typename U >
 gsTensorBSpline (KnotVectorType KV1, gsKnotVector< U > KV2, gsMatrix< T > tcoefs, typename util::enable_if< d==2, U >::type *=NULL)
 
 gsTensorBSpline (KnotVectorType KV1, KnotVectorType KV2, KnotVectorType KV3, gsMatrix< T > tcoefs)
 
 gsTensorBSpline (KnotVectorType KV1, KnotVectorType KV2, KnotVectorType KV3, KnotVectorType KV4, gsMatrix< T > tcoefs)
 
HausdorffDistance (const gsGeometry &other, const index_t nsamples=1000, const T accuracy=1e-6, const bool directed=false) const
 Computes the Hausdorff distance between *this to other.
 
size_t id () const
 Returns the patch index for this patch.
 
void insertKnot (T knot, int dir, int i=1)
 Inserts knot knot at direction dir, i times.
 
virtual void invertPoints (const gsMatrix< T > &points, gsMatrix< T > &result, const T accuracy=1e-6, const bool useInitialPoint=false) const
 
bool isPatchCorner (gsMatrix< T > const &v, T tol=1e-3) const
 Return true if point u is a corner of the patch with tolerance tol.
 
KnotVectorType & knots (const int i)
 Returns a reference to the knot vector in direction i.
 
const KnotVectorType & knots (const int i) const
 Returns a reference to the knot vector i.
 
gsGeometry< T >::uPtr localRep (const gsMatrix< T > &u) const
 
int newtonRaphson (const gsVector< T > &value, gsVector< T > &arg, bool withSupport=true, const T accuracy=1e-6, int max_loop=100, T damping_factor=1) const
 
virtual index_t nPieces () const
 Number of pieces in the domain of definition.
 
int orientation () const
 Evaluates if the geometry orientation coincide with the ambient orientation. This is computed in the center of the parametrization and will fail to be meaningful if the geometry is singular. returns one if codimension is not zero.
 
virtual gsMatrix< T > parameterCenter () const
 Returns a "central" point inside inside the parameter domain.
 
gsMatrix< T > parameterCenter (const boxCorner &bc) const
 Get coordinates of the boxCorner bc in the parameter domain.
 
gsMatrix< T > parameterCenter (const boxSide &bs) const
 Get coordinates of the midpoint of the boxSide bs in the parameter domain.
 
virtual const gsFunctionpiece (const index_t k) const
 Returns the piece(s) of the function(s) at subdomain k.
 
std::ostream & print (std::ostream &os) const
 Prints the object as a string.
 
void recoverPoints (gsMatrix< T > &xyz, gsMatrix< T > &uv, index_t k, const T accuracy) const
 Recovers the points of the geometry from the given points xyz and parameters uv.
 
void reverse (unsigned k)
 
void setFurthestCorner (gsMatrix< T > const &v)
 Modifies the parameterization such that the point v is the ending corner of the parametrization of the patch. Assumes that v is either input is indeed a corner of this patch.
 
void setId (const size_t i)
 Sets the patch index for this patch.
 
void setOriginCorner (gsMatrix< T > const &v)
 Modifies the parameterization such that the point v is the origin of the parametrization of the patch. Assumes that v is either input is indeed a corner of this patch.
 
void setPeriodic (int dir)
 
index_t size () const
 size
 
void slice (index_t dir_fixed, T par, BoundaryGeometryType &result) const
 
void splitAt (index_t dir, T xi, gsTensorBSpline< d, T > &left, gsTensorBSpline< d, T > &right) const
 
std::vector< gsGeometry< T > * > splitAtMult (index_t minMult=1, index_t dir=-1) const
 
void swapDirections (const unsigned i, const unsigned j)
 Swap directions.
 
std::vector< gsGeometry< T > * > uniformSplit (index_t dir=-1) const
 
Evaluation functions

re-implemented from gsFunction, see also Evaluation members

void eval_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Evaluate the function at points u into result.
 
virtual void deriv_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Evaluate derivatives of the function \(f:\mathbb{R}^d\rightarrow\mathbb{R}^n\) at points u into result.
 
virtual void deriv2_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Evaluate second derivatives of the function at points u into result.
 
virtual void evalAllDers_into (const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const
 Evaluate the nonzero functions and their derivatives up to order n at points u into result.
 
virtual void compute (const gsMatrix< T > &in, gsFuncData< T > &out) const
 Computes function data.
 
Accessors
virtual const gsBasis< T > & basis () const =0
 Returns a const reference to the basis of the geometry.
 
virtual gsBasis< T > & basis ()=0
 Returns a reference to the basis of the geometry.
 
short_t targetDim () const
 Dimension of the ambient physical space (overriding gsFunction::targetDim())
 
short_t coefDim () const
 Dimension n of the coefficients (control points)
 
short_t geoDim () const
 Dimension n of the absent physical space.
 
virtual short_t domainDim () const
 Dimension d of the parameter domain (overriding gsFunction::domainDim()).
 
short_t parDim () const
 Dimension d of the parameter domain (same as domainDim()).
 
short_t coDim () const
 Co-dimension of the geometric object.
 
gsMatrix< T > support () const
 Returns the range of parameters (same as parameterRange())
 
gsMatrix< T > parameterRange () const
 Returns the range of parameters as a matrix with two columns, [lower upper].
 
std::vector< boxSidelocateOn (const gsMatrix< T > &u, gsVector< bool > &onG2, gsMatrix< T > &preIm, bool lookForBoundary=false, real_t tol=1.e-6) const
 Get back the side of point u.
 
Coefficient access functions

These functions allow direct access to the coefficient matrix of the geometry.

gsMatrix< T > & coefs ()
 
const gsMatrix< T > & coefs () const
 Returns the coefficient matrix of the geometry.
 
gsMatrix< T >::RowXpr coef (index_t i)
 Returns the i-th coefficient of the geometry as a row expression.
 
gsMatrix< T >::ConstRowXpr coef (index_t i) const
 Returns the i-th coefficient of the geometry as a row expression.
 
T & coef (index_t i, index_t j)
 Returns the j-th coordinate of the i-th coefficient of the geometry.
 
const T coef (index_t i, index_t j) const
 Returns the j-th coordinate of the i-th coefficient of the geometry.
 
void setCoefs (gsMatrix< T > cc)
 Set the coefficient matrix of the geometry, taking ownership of the matrix.
 
index_t coefsSize () const
 Return the number of coefficients (control points)
 
Transformation functions

These functions apply various linear and affine transformations to the coefficients.

void linearTransform (const gsMatrix< T > &mat)
 Apply the given square matrix to every control point.
 
void rotate (T angle, const gsVector< T, 3 > &axis)
 Apply 3D Rotation by angle radians around axis axis.
 
void rotate (T angle)
 Apply 2D Rotation by angle radians.
 
void scale (T s, int coord=-1)
 Apply Scaling by factor s.
 
void scale (gsVector< T > const &v)
 Apply Scaling coord-wise by a vector v.
 
void translate (gsVector< T > const &v)
 Apply translation by vector v.
 
gsMatrix< T >::RowXpr coefAtCorner (boxCorner const &c)
 Returns the control point at corner c.
 
gsMatrix< T >::ConstRowXpr coefAtCorner (boxCorner const &c) const
 Returns the control point at corner c.
 
Other miscellaneous functions
virtual void uniformRefine (int numKnots=1, int mul=1, short_t const dir=-1)
 Refine the geometry uniformly, inserting numKnots new knots into each knot span.
 
virtual void uniformCoarsen (int numKnots=1)
 Coarsen the geometry uniformly, removing numKnots new knots into each knot span.
 
void refineElements (std::vector< index_t > const &boxes)
 Refines the basis and adjusts the coefficients to keep the geometry the same.
 
void embed3d ()
 Embeds coefficients in 3D.
 
void embed (index_t N, bool pad_right=true)
 Embeds coefficients in N dimensions For the new dimensions zeros are added (or removed) on the right (if pad_right is true) or on the left (if pad_right is false)
 
short_t degree (const short_t &i) const
 Returns the degree wrt direction i.
 
virtual void insertKnot (T knot, index_t dir, index_t i=1)
 Inserts knot knot at direction dir, i times.
 
virtual void degreeIncrease (short_t const i=1, short_t const dir=-1)
 Elevate the degree by the given amount i for the direction dir. If dir is -1 then degree elevation is done for all directions. Uses gsBasis<T>::degreeIncrease.
 
virtual void degreeReduce (short_t const i=1, short_t const dir=-1)
 Reduces the degree by the given amount i for the direction dir. If dir is -1 then degree reduction is done for all directions. Uses gsBasis<T>::degreeReduce.
 
virtual void degreeDecrease (short_t const i=1, short_t const dir=-1)
 Reduces the degree by the given amount i for the direction dir. If dir is -1 then degree reduction is done for all directions. Uses gsBasis<T>::degreeDecrease.
 
virtual void hessian_into (const gsMatrix< T > &u, gsMatrix< T > &result, index_t coord) const
 
void controlNet (gsMesh< T > &mesh) const
 Return the control net of the geometry.
 
void outerNormal_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Computes the outer normals at parametric points u.
 
std::vector< gsGeometry * > boundary () const
 Get boundary of this geometry as a vector of new gsGeometry instances.
 
virtual gsGeometry::uPtr boundary (boxSide const &s) const
 Get parametrization of boundary side s as a new gsGeometry uPtr.
 
virtual gsGeometry::uPtr iface (const boundaryInterface &bi, const gsGeometry &other) const
 Computes and returns the interface with other as a new geometry.
 
gsGeometry::uPtr component (boxComponent const &bc) const
 Get parametrization of box component bc as a new gsGeometry uPtr.
 
virtual void merge (gsGeometry *other)
 Merge the given other geometry into this one.
 
void evaluateMesh (gsMesh< T > &mesh) const
 
Evaluation functions

These functions allow one to evaluate the function as well as its derivatives at one or more points in the parameter space. See also Evaluation members.

virtual void eval_component_into (const gsMatrix< T > &u, const index_t comp, gsMatrix< T > &result) const
 Evaluate the function for component comp in the target dimension at points u into result.
 
virtual void jacobian_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Computes for each point u a block of result containing the Jacobian matrix.
 
void div_into (const gsMatrix< T > &u, gsMatrix< T > &result) const
 Computes for each point u a block of result containing the divergence matrix.
 
virtual gsMatrix< T > hessian (const gsMatrix< T > &u, index_t coord=0) const
 
virtual gsMatrix< T > laplacian (const gsMatrix< T > &u) const
 Evaluate the Laplacian at points u.
 

Protected Attributes

gsBasis< T > * m_basis
 Pointer to the basis of this geometry.
 
gsMatrix< T > m_coefs
 Coefficient matrix of size coefsSize() x geoDim()
 
size_t m_id
 

Constructor & Destructor Documentation

◆ gsTensorBSpline() [1/4]

template<short_t d, class T >
template<typename U >
gsTensorBSpline ( KnotVectorType  KV1,
gsKnotVector< U >  KV2,
gsMatrix< T >  tcoefs,
typename util::enable_if< d==2, U >::type *  = NULL 
)
inline

Construct 2D tensor B-Spline by knot vectors, degrees and coefficient matrix (copying coefficient matrix)

◆ gsTensorBSpline() [2/4]

template<short_t d, class T >
gsTensorBSpline ( gsMatrix< T > const &  corner,
KnotVectorType  KV1,
KnotVectorType  KV2 
)

Construct 2D tensor B-Spline by knot vectors, degrees and 4 corner vertices, the four boundary curves are linear interpolations of the corners, the size of the matrix corner is 4 by 3

◆ gsTensorBSpline() [3/4]

template<short_t d, class T >
gsTensorBSpline ( KnotVectorType  KV1,
KnotVectorType  KV2,
KnotVectorType  KV3,
gsMatrix< T >  tcoefs 
)
inline

Construct 3D tensor B-Spline by knot vectors, degrees and coefficient matrix (copying coefficient matrix)

◆ gsTensorBSpline() [4/4]

template<short_t d, class T >
gsTensorBSpline ( KnotVectorType  KV1,
KnotVectorType  KV2,
KnotVectorType  KV3,
KnotVectorType  KV4,
gsMatrix< T >  tcoefs 
)
inline

Construct 4D tensor B-Spline by knot vectors, degrees and coefficient matrix (copying coefficient matrix)

Member Function Documentation

◆ active()

template<typename T >
gsMatrix< index_t > active ( const gsMatrix< T > &  u) const
inlineinherited

Returns the indices of active (nonzero) functions at points u, as a list of indices.

See also
active_into()

◆ active_into()

template<class T >
void active_into ( const gsMatrix< T > &  u,
gsMatrix< index_t > &  result 
) const
inlinevirtualinherited

Indices of active (non-zero) function(s) for each point.

The columns are sorted in increasing order, if on a point there are less active then the number of rows in the result matrix (some other point has more actives) then the rest of the column is filled with 0s.

Parameters
u
result

Reimplemented from gsFunctionSet< T >.

◆ basis() [1/2]

template<class T >
virtual const gsBasis< T > & basis ( ) const
pure virtualinherited

Returns a const reference to the basis of the geometry.

Note
This function will return the derived concrete type of the basis.

Implemented in gsConstantFunction< T >.

◆ basis() [2/2]

template<class T >
virtual gsBasis< T > & basis ( )
pure virtualinherited

Returns a reference to the basis of the geometry.

Note
This function will return the derived concrete type of the basis.

Implemented in gsConstantFunction< T >.

◆ closestPointTo()

template<class T >
T closestPointTo ( const gsVector< T > &  pt,
gsVector< T > &  result,
const T  accuracy = 1e-6,
const bool  useInitialPoint = false 
) const
inherited

Returns the parameters of closest point to pt as an argument, and the Euclidean distance as a return value

◆ coefs()

template<class T >
gsMatrix< T > & coefs ( )
inlineinherited

Returns the coefficient matrix of the geometry Coefficient matrix of size coefsSize() x geoDim()

◆ compute()

template<class T >
void compute ( const gsMatrix< T > &  in,
gsFuncData< T > &  out 
) const
virtualinherited

Computes function data.

This function evaluates the functions and their derivatives at the points in and writes them in the corresponding fields of out. Which field to write (and what to compute) is controlled by the out.flags (see also gsFuncData).

The input points in are expected to be compatible with the implementation/representation of the function, i.e. they should be points inside the domain of definitition of the function

Parameters
[in]in
[out]out

Reimplemented from gsFunctionSet< T >.

Reimplemented in gsConstantFunction< T >.

◆ computeMap()

template<class T >
void computeMap ( gsMapData< T > &  InOut) const
virtualinherited

Computes map function data.

This function evaluates the functions and their derivatives at the points InOut.points and writes them in the corresponding fields of InOut. Which field to write (and what to compute) is controlled by the InOut.flags (see also gsMapData). This is intended for parametrizations only and it works on functions sets of cardinality 1 only.

Parameters
[in,out]InOut

◆ deriv()

template<class T >
gsMatrix< T > deriv ( const gsMatrix< T > &  u) const
inherited

Evaluate the derivatives,.

See also
deriv_into()

◆ deriv2()

template<class T >
gsMatrix< T > deriv2 ( const gsMatrix< T > &  u) const
inherited

Evaluates the second derivatives of active (i.e., non-zero) functions at points u.

See documentation for deriv2_into() (the one without input parameter coefs) for details.

See also
deriv2_into()
Parameters
[in]uEvaluation points in columns.
Returns
For every column of u, a column containing the second derivatives. See documentation for deriv2_into() (the one without input parameter coefs) for details.

◆ deriv2_into()

template<class T >
void deriv2_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtualinherited

Evaluate second derivatives of the function at points u into result.

Let d be the dimension of the source space ( d = domainDim() ).
Let n be the dimension of the image/target space ( n = targetDim() ).
Let N denote the number of evaluation points.

Parameters
[in]ugsMatrix of size d x N, where each column of u represents one evaluation point.
[out]resultgsMatrix of size (S*n) x N, where S=d*(d+1)/2.
Each column in result corresponds to one point (i.e., one column in u)
and contains the following values (for d=3, n=3):
\( (\partial_{xx} f^{(1)}, \partial_{yy} f^{(1)}, \partial_{zz} f^{(1)}, \partial_{xy} f^{(1)}, \partial_{xz} f^{(1)}, \partial_{yz} f^{(1)}, \partial_{xx} f^{(2)},\ldots,\partial_{yz} f^{(3)} )^T\)
Warning
By default uses central finite differences with h=0.00001! One must override this function in derived classes to get proper results.

Reimplemented from gsFunction< T >.

Reimplemented in gsConstantFunction< T >.

◆ deriv_into()

template<class T >
void deriv_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtualinherited

Evaluate derivatives of the function \(f:\mathbb{R}^d\rightarrow\mathbb{R}^n\) at points u into result.

Let d be the dimension of the source space ( d = domainDim() ).
Let n be the dimension of the image/target space ( n = targetDim() ).
Let N denote the number of evaluation points.

Let \( f:\mathbb R^2 \rightarrow \mathbb R^3 \), i.e., \( f(x,y) = ( f^{(1)}(x,y), f^{(2)}(x,y), f^{(3)}(x,y) )^T\),
and let \( u = ( u_1, \ldots, u_N) = ( (x_1,y_1)^T, \ldots, (x_N, y_N)^T )\).
Then, result is of the form

\[ \left[ \begin{array}{cccc} \partial_x f^{(1)}(u_1) & \partial_x f^{(1)}(u_2) & \ldots & \partial_x f^{(1)}(u_N) \\ \partial_y f^{(1)}(u_1) & \partial_y f^{(1)}(u_2) & \ldots & \partial_y f^{(1)}(u_N) \\ \partial_x f^{(2)}(u_1) & \partial_x f^{(2)}(u_2) & \ldots & \partial_x f^{(2)}(u_N) \\ \partial_y f^{(2)}(u_1) & \partial_y f^{(2)}(u_2) & \ldots & \partial_x f^{(2)}(u_N) \\ \partial_x f^{(3)}(u_1) & \partial_x f^{(3)}(u_2) & \ldots & \partial_x f^{(3)}(u_N)\\ \partial_y f^{(3)}(u_1) & \partial_y f^{(3)}(u_2) & \ldots & \partial_y f^{(3)}(u_N) \end{array} \right] \]

Parameters
[in]ugsMatrix of size d x N, where each column of u represents one evaluation point.
[out]resultgsMatrix of size (d * n) x N. Each row of result corresponds to one component in the target space and contains the gradients for each evaluation point, as row vectors, one after the other (see above for details on the format).
Warning
By default, gsFunction uses central finite differences with h=0.00001! One must override this function in derived classes to get proper results.

Reimplemented from gsFunction< T >.

Reimplemented in gsConstantFunction< T >.

◆ directedHausdorffDistance()

template<class T >
T directedHausdorffDistance ( const gsGeometry< T > &  other,
const index_t  nsamples = 1000,
const T  accuracy = 1e-6 
) const
inherited

Computes the Hausdorff distance in a single direction from *this to other. The Hausdorff distance is computed by taking the maximum of the shortest distances between points of this and other.

◆ eval()

template<class T >
gsMatrix< T > eval ( const gsMatrix< T > &  u) const
inherited

Evaluate the function,.

See also
eval_into()

◆ eval_into()

template<class T >
void eval_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
virtualinherited

Evaluate the function at points u into result.

Let d be the dimension of the source space ( d = domainDim() ).
Let n be the dimension of the image/target space ( n = targetDim() ).
Let N denote the number of evaluation points.

Parameters
[in]ugsMatrix of size d x N, where each column of u represents one evaluation point.
[out]resultgsMatrix of size n x N, where each column of u represents the result of the function at the respective valuation point.

Implements gsFunction< T >.

◆ evalAllDers()

template<class T >
std::vector< gsMatrix< T > > evalAllDers ( const gsMatrix< T > &  u,
int  n,
bool  sameElement = false 
) const
inherited

Evaluate all derivatives upto order n,.

See also
evalAllDers_into

◆ evalAllDers_into()

template<class T >
void evalAllDers_into ( const gsMatrix< T > &  u,
int  n,
std::vector< gsMatrix< T > > &  result,
bool  sameElement = false 
) const
virtualinherited

Evaluate the nonzero functions and their derivatives up to order n at points u into result.

The derivatives (the 0-th derivative is the function value) are stored in a result. result is a std::vector, where result[i] is a gsMatrix which contains the i-th derivatives.

The entries in result[0], result[1], and result[2] are ordered as in eval_into(), deriv_into(), and deriv2_into(), respectively. For i > 2, the derivatives are stored in lexicographical order, e.g. for order i = 3 and dimension 2 the derivatives are stored as follows: \( \partial_{xxx}, \, \partial_{xxy}, \, \partial_{xyy}, \, \partial_{yyy}.\, \)

Parameters
[in]uEvaluation points, each column corresponds to one evaluation point.
[in]nAll derivatives up to order n are computed and stored in result.
[in,out]resultSee above for format.

Reimplemented from gsFunctionSet< T >.

Reimplemented in gsConstantFunction< T >.

◆ evaluateMesh()

template<class T >
void evaluateMesh ( gsMesh< T > &  mesh) const
inherited

Updates the vertices of input mesh by evaluating the geometry at vertices. Vertices of the new mesh are

{ geom(v) | v vertex of input mesh }

◆ getIsoParametricSlice()

template<class T >
gsGeometrySlice< T > getIsoParametricSlice ( index_t  dir_fixed,
par 
) const
inherited

Gives back an isoParametric slice of the geometry with fixed par in direction dim_fixed as an gsGeometrySlice object.

◆ hessian()

template<class T >
virtual gsMatrix< T > hessian ( const gsMatrix< T > &  u,
index_t  coord = 0 
) const
inlinevirtualinherited

Evaluates the Hessian (matrix of second partial derivatives) of coordinate coord at points u.

◆ hessian_into()

template<class T >
void hessian_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result,
index_t  coord 
) const
virtualinherited

Compute the Hessian matrix of the coordinate coord evaluated at points u

Reimplemented from gsFunction< T >.

◆ invertPoints()

template<class T >
void invertPoints ( const gsMatrix< T > &  points,
gsMatrix< T > &  result,
const T  accuracy = 1e-6,
const bool  useInitialPoint = false 
) const
virtualinherited

Takes the physical points and computes the corresponding parameter values. If the point cannot be inverted (eg. is not part of the geometry) the corresponding parameter values will be undefined

◆ laplacian()

template<class T >
gsMatrix< T > laplacian ( const gsMatrix< T > &  u) const
virtualinherited

Evaluate the Laplacian at points u.

By default uses central finite differences with h=0.00001

Reimplemented in gsFunctionExpr< T >.

◆ localRep()

template<short_t d, class T >
gsGeometry< T >::uPtr localRep ( const gsMatrix< T > &  u) const

Returns a local representation of the geometry in the cell containing the point u

◆ locateOn()

template<class T >
std::vector< boxSide > locateOn ( const gsMatrix< T > &  u,
gsVector< bool > &  onG2,
gsMatrix< T > &  preIm,
bool  lookForBoundary = false,
real_t  tol = 1.e-6 
) const
inherited

Get back the side of point u.

Check if points u also lie on the geometry and if required computes the if the points in u lie on one of the boundaries of the geometry

Parameters
uMatrix of points of the form geoDim() x #points
onG2gsVector of booleans which indicate if the point is in the domain or outside
preImMatrix of preimages of the points u
lookForBoundaryif required the boundaries are computed the points in u lie on
Returns
A std::vector of boxSides containing the numbers of the sides or zero if the points are in the interior If the flag lookForBoundary is not set then a vector containing anything will be returned

◆ newtonRaphson()

template<class T >
int newtonRaphson ( const gsVector< T > &  value,
gsVector< T > &  arg,
bool  withSupport = true,
const T  accuracy = 1e-6,
int  max_loop = 100,
damping_factor = 1 
) const
inherited

Newton-Raphson method to find a solution of the equation f(arg) = value with starting vector arg. If the point cannot be inverted the corresponding parameter values will be undefined

◆ outerNormal_into()

template<class T >
void outerNormal_into ( const gsMatrix< T > &  u,
gsMatrix< T > &  result 
) const
inherited

Computes the outer normals at parametric points u.

Assumes that u is a list of points on the boundary of the geometry.

◆ refineElements()

template<class T >
void refineElements ( std::vector< index_t > const &  boxes)
inherited

Refines the basis and adjusts the coefficients to keep the geometry the same.

The syntax of boxes depends on the implementation in the underlying basis. See gsBasis::refineElements_withCoefs() for details.

◆ reverse()

template<short_t d, class T >
void reverse ( unsigned  k)

Toggle orientation wrt coordinate k

Todo:
use flipTensor to generalize to any dimension

◆ setPeriodic()

template<short_t d, class T >
void setPeriodic ( int  dir)
inline

Sets the resulting BSpline to be periodic in direction dir.

Parameters
dir

◆ size()

template<class T >
index_t size ( ) const
inlinevirtualinherited

size

Warning
gsFunction and gsGeometry have size() == 1. This should not be confused with the size eg. of gsGeometry::basis(), which is the number of basis functions in the basis
Returns
the size of the function set: the total number of functions

Reimplemented from gsFunctionSet< T >.

Reimplemented in gsPiecewiseFunction< T >.

◆ slice()

template<short_t d, class T >
void slice ( index_t  dir_fixed,
par,
BoundaryGeometryType result 
) const

Constructs an isoparametric slice of this tensorBSpline by fixing par in direction dir_fixed. The resulting tensorBSpline has one less dimension and is given back in result.

◆ splitAt()

template<short_t d, class T >
void splitAt ( index_t  dir,
xi,
gsTensorBSpline< d, T > &  left,
gsTensorBSpline< d, T > &  right 
) const

Splits the geometry into two pieces (left, right) along direction dir at xi. The splitting is performed by increasing the multiplicity of knot xi to p+1, or if xi does not exist as knot, it is inserted p+1 times.

◆ splitAtMult()

template<short_t d, class T >
std::vector< gsGeometry< T > * > splitAtMult ( index_t  minMult = 1,
index_t  dir = -1 
) const

Split the patch into smaller patches at the position of all knots with multiplicity at least minMult

◆ uniformSplit()

template<short_t d, class T >
std::vector< gsGeometry< T > * > uniformSplit ( index_t  dir = -1) const
virtual

Splits the geometry either two parts in direction dir, or if dir = -1 in 2^d parts, by calling splitAt() for each direction. The function automatically searches for the midpoint the corresponding knot vector.

Reimplemented from gsGeometry< T >.

Member Data Documentation

◆ m_id

template<class T >
size_t m_id
protectedinherited

An auxiliary index for this geometry (eg. in case it is part of a multi-patch object)