47 this->active_into(u,actives);
51 linearCombination_into( coefs, actives, B, result );
61 const index_t numPts = u.cols();
62 const index_t pardim = this->dim();
64 result.setZero( n, pardim * numPts );
68 this->deriv_into(u,B);
69 this->active_into(u,ind);
70 const index_t numAct=ind.rows();
72 for (
index_t p = 0; p < numPts; ++p)
74 for (
index_t a=0; a< numAct ; ++a )
76 result.block(c,p*pardim, 1, pardim).noalias() +=
77 coefs(ind(a,p), c) * B.block(a*pardim, p, pardim, 1).transpose();
90 this->deriv_into(u,B);
92 this->active_into(u,actives);
96 linearCombination_into( coefs, actives, B, result );
109 this->deriv2_into(u,B);
111 this->active_into(u,actives);
115 linearCombination_into( coefs, actives, B, result );
123 bool sameElement)
const
128 if ( 0 == u.cols() )
return;
131 std::vector< gsMatrix<T> >B;
136 this->evalAllDers_into(u,n,B,sameElement);
138 this->active_into(u.col(0), actives);
140 this->active_into(u, actives);
144 for(
unsigned i = 0; i <= n; i++)
145 linearCombination_into( coefs, actives, B[i], result[i], sameElement);
155 const index_t numPts = values.cols() ;
156 const index_t tarDim = coefs.cols() ;
157 const index_t stride = values.rows() / actives.rows();
160 "Number of values "<<values.rows()<<
" and actives "<<actives.rows()<<
" does not fit together");
162 result.resize( tarDim * stride, numPts );
167 for (
index_t i = 0; i < actives.rows(); ++i )
168 for (
index_t c = 0; c < tarDim; ++c )
169 result.middleRows( stride * c, stride).noalias() +=
170 coefs( actives.
at(i), c) * values.middleRows(stride * i, stride);
174 for (
index_t pt = 0; pt < numPts; ++pt )
175 for (
index_t i = 0; i < actives.rows(); ++i )
176 for (
index_t c = 0; c < tarDim; ++c )
177 result.block( stride * c, pt, stride, 1).noalias() +=
178 coefs( actives(i,pt), c) * values.block( stride * i, pt, stride, 1);
186 this->deriv2_into(u,tmp);
187 return tmp.colwise().sum();
190template<
class T>
inline
197 nact.setOnes(this->size());
200# pragma omp parallel for default(shared) private(tmp)
201 for (
index_t k=0; k<u.cols(); k++)
203 active_into(u.col(k), tmp);
204 for (
index_t t = 0; t<tmp.size(); t++)
217 std::vector<gsEigen::Triplet<T,index_t>> alltriplets;
218 alltriplets.reserve(nact.sum());
219# pragma omp parallel for default(shared) private(ev, act)
220 for (
index_t k=0; k<u.cols(); k++)
222 eval_into (u.col(k), ev );
223 active_into(u.col(k), act);
224 std::vector<gsEigen::Triplet<T,index_t>>tripletList(act.rows());
225 for (
index_t i=0; i!=act.rows(); ++i)
226 tripletList[i] = gsEigen::Triplet<T,index_t>(k,act.at(i),ev.
at(i));
228# pragma omp critical (collocation)
229 alltriplets.insert(alltriplets.end(), tripletList.begin(), tripletList.end());
232 result.setFromTriplets(alltriplets.begin(), alltriplets.end());
233 result.makeCompressed();
239template<
class T>
inline
243 GISMO_ASSERT (dim() == pts.rows() ,
"Wrong dimension of the points("<<
244 pts.rows()<<
", expected "<<dim() <<
").");
245 GISMO_ASSERT (this->size() == pts.cols() ,
"Expecting as many points as the basis functions." );
246 GISMO_ASSERT (this->size() == vals.cols(),
"Expecting as many values as the number of points." );
254 typename gsSparseSolver<T>::BiCGSTABILUT solver( Cmat );
257 x = solver.solve( vals.transpose() );
263 return makeGeometry(
give(x) );
266template<
class T>
inline
270 "Expecting as many values as the number of basis functions." );
273 return interpolateData(vals, pts);
294template<
class T>
inline
298template<
class T>
inline
303template<
class T>
inline
307 nodes.transposeInPlace();
308 connectivity(nodes, mesh);
349gsBasis<T>* gsBasis<T>::boundaryBasis_impl(boxSide
const &)
const
358 const short_t dim = this->dim();
368 result = result->boundaryBasis(
boxSide(loc+2*d) );
370 result = this->boundaryBasis(
boxSide(loc+2*d) );
386 const short_t dim = this->dim();
398 for (
index_t j=0; j<tmp.size(); ++j)
399 tmp(j,0) = indices(tmp(j,0),0);
401 result = result->boundaryBasis(
boxSide(loc+2*d) );
406 result = this->boundaryBasis(
boxSide(loc+2*d) );
416 const index_t sz = this->size();
417 indices.resize(sz,1);
422 if (noBoundary && d > 0)
425 gsMatrix<index_t> bdy_indices = result->allBoundary();
427 const index_t indices_sz = indices.rows();
428 const index_t bdy_indices_sz = bdy_indices.rows();
433 gsMatrix<index_t> indices_cleaned(indices_sz - bdy_indices_sz, 1);
435 for (
index_t i = 0; i < indices_sz; ++i)
437 if (
util::greater(i, bdy_indices(j, 0)) && j < bdy_indices_sz)
439 if (
util::less(i, bdy_indices(j, 0)) || j == bdy_indices_sz)
441 indices_cleaned(t, 0) = indices(i, 0);
445 GISMO_ASSERT(t == indices_cleaned.rows(),
"Internal error.");
446 indices.swap(indices_cleaned);
463{
return support().row(dir); }
502 evalSingle_into(i,u, result[0]);
505 evalSingle_into (i,u, result[0]);
506 derivSingle_into(i,u, result[1]);
509 evalSingle_into (i,u, result[0]);
510 derivSingle_into (i,u, result[1]);
511 deriv2Single_into(i,u, result[2]);
514 GISMO_ERROR(
"evalAllDers implemented for order up to 2<"<<n<<
" for "<<*
this);
541typename gsBasis<T>::domainIter
546typename gsBasis<T>::domainIter
575std::vector<index_t> gsBasis<T>::asElementsUnrefine(gsMatrix<T>
const &,
int)
const
647 const short_t dm = this->dim();
648 for (
short_t k = 0; k!=dm; ++k)
650 const short_t p = this->degree(k);
653 this->degreeElevate(i-p, k);
657 this->degreeReduce(p-i, k);
665 for (
short_t d = 0; d < dim(); ++ d )
668 degreeIncrease(i-degree(d),d);
669 else if ( i < degree(d) )
670 degreeDecrease(-i+degree(d),d);
714 const domainIter it = this->makeDomainIterator();
716 for (; it->good(); it->next() )
718 const T sz = it->getMinCellLength();
719 if ( sz < h || h == 0 ) h = sz;
729 for (; it->good(); it->next() )
731 const T sz = it->getMaxCellLength();
732 if ( sz > h ) h = sz;
738template<
class T>
inline
739std::vector<gsSparseMatrix<T> >
740gsBasis<T>::collocationMatrixWithDeriv(
const gsMatrix<T> & u)
const
742 return this->collocationMatrixWithDeriv(*
this,u);
745template<
class T>
inline
746std::vector<gsSparseMatrix<T> >
756# pragma omp parallel for default(shared) private(tmp)
760 for (
index_t t = 0; t<tmp.size(); t++)
769 std::vector<std::vector<gsEigen::Triplet<T,index_t>>> alltriplets(2+(dim==2));
771 for (
index_t d=0; d!=2+(dim==2); d++)
774 alltriplets[d].reserve(nact.sum());
777# pragma omp parallel for
778 for (
index_t k=0; k<u.cols(); ++k)
780 std::vector<gsMatrix<T>> ev;
781 gsMatrix<index_t> act;
784 std::vector<std::vector<gsEigen::Triplet<T,index_t>>> tripletLists(2+(dim==2));
785 for (
index_t d=0; d!=2+(dim==2); d++)
786 tripletLists[d].resize(act.rows());
788 for (
index_t i=0; i!=act.rows(); ++i)
790 tripletLists[0][i] = gsEigen::Triplet<T,index_t>(k,act.at(i),ev[0].at(i));
791 tripletLists[1][i] = gsEigen::Triplet<T,index_t>(k,act.at(i),ev[1].at(dim*i));
793 tripletLists[2][i] = gsEigen::Triplet<T,index_t>(k,act.at(i),ev[1].at(dim*i+1));
796# pragma omp critical (collocation)
798 for (
index_t d=0; d!=2+(dim==2); d++)
799 alltriplets[d].insert(alltriplets[d].end(), tripletLists[d].begin(), tripletLists[d].end());
806 result[d].setFromTriplets(alltriplets[d].begin(), alltriplets[d].end());
807 result[d].makeCompressed();
Struct which represents a certain side of a box.
Definition gsBoundary.h:85
Represents an individual function in a function set, or a certain component of a vector-valued functi...
Definition gsBasisFun.h:37
A basis represents a family of scalar basis functions defined over a common parameter domain.
Definition gsBasis.h:79
virtual void activeCoefs_into(const gsVector< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Returns the matrix result of active coefficients at points u, each row being one coefficient....
Definition gsBasis.hpp:328
virtual void deriv2_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the second derivatives of all active basis function at points u.
Definition gsBasis.hpp:484
virtual gsMatrix< T > laplacian(const gsMatrix< T > &u) const
Compute the Laplacian of all nonzero basis functions at points u.
Definition gsBasis.hpp:183
virtual void uniformRefine(int numKnots=1, int mul=1, short_t dir=-1)
Refine the basis uniformly by inserting numKnots new knots with multiplicity mul on each knot span.
Definition gsBasis.hpp:603
virtual gsBasis::uPtr tensorize(const gsBasis &other) const
Return a tensor basis of this and other.
Definition gsBasis.hpp:537
virtual void uniformCoarsen_withTransfer(gsSparseMatrix< T, RowMajor > &transfer, int numKnots=1)
Coarsen the basis uniformly and produce a sparse matrix which maps coarse coefficient vectors to refi...
Definition gsBasis.hpp:624
virtual void anchors_into(gsMatrix< T > &result) const
Returns the anchor points that represent the members of the basis in result. There is exactly one anc...
Definition gsBasis.hpp:295
virtual void evalFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluate the function described by coefs at points u, i.e., evaluates a linear combination of coefs x...
Definition gsBasis.hpp:37
virtual T getMaxCellLength() const
Get the maximum mesh size, as expected for approximation error estimates.
Definition gsBasis.hpp:725
virtual short_t maxDegree() const
If the basis is of polynomial or piecewise polynomial type, then this function returns the maximum po...
Definition gsBasis.hpp:687
virtual void uniformCoarsen(int numKnots=1)
Coarsen the basis uniformly by removing groups of numKnots consecutive knots, each knot removed mul t...
Definition gsBasis.hpp:616
gsSparseMatrix< T > collocationMatrix(gsMatrix< T > const &u) const
Computes the collocation matrix w.r.t. points u.
Definition gsBasis.hpp:191
virtual void numActive_into(const gsMatrix< T > &u, gsVector< index_t > &result) const
Returns the number of active (nonzero) basis functions at points u in result.
Definition gsBasis.hpp:324
virtual void reduceContinuity(int const &i=1)
Reduces the continuity of the basis along element boundaries.
Definition gsBasis.hpp:679
virtual void reverse()
Reverse the basis.
Definition gsBasis.hpp:703
virtual void uniformRefine_withTransfer(gsSparseMatrix< T, RowMajor > &transfer, int numKnots=1, int mul=1)
Refine the basis uniformly.
Definition gsBasis.hpp:611
virtual gsMatrix< index_t > allBoundary() const
Returns the indices of the basis functions that are nonzero at the domain boundary.
Definition gsBasis.hpp:334
virtual void evalAllDersSingle_into(index_t i, const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result) const
Evaluate the basis function i and its derivatives up to order n at points u into result.
Definition gsBasis.hpp:494
static void linearCombination_into(const gsMatrix< T > &coefs, const gsMatrix< index_t > &actives, const gsMatrix< T > &values, gsMatrix< T > &result, bool sameElement=false)
Computes the linear combination coefs * values( actives )
Definition gsBasis.hpp:150
virtual void evalSingle_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the i-th basis function at points u into result.
Definition gsBasis.hpp:470
virtual void matchWith(const boundaryInterface &bi, const gsBasis< T > &other, gsMatrix< index_t > &bndThis, gsMatrix< index_t > &bndOther, index_t offset=0) const
Computes the indices of DoFs that match on the interface bi. The interface is assumed to be a common ...
Definition gsBasis.hpp:707
virtual void elevateContinuity(int const &i=1)
Elevates the continuity of the basis along element boundaries.
Definition gsBasis.hpp:675
gsBasisFun< T > function(index_t i) const
Returns the i-th basis function as a gsFunction.
Definition gsBasis.hpp:29
virtual void connectivity(const gsMatrix< T > &nodes, gsMesh< T > &mesh) const
Definition gsBasis.hpp:312
virtual gsBasis::uPtr create() const
Create an empty basis of the derived type and return a pointer to it.
Definition gsBasis.hpp:532
virtual void degreeDecrease(short_t const &i=1, short_t const dir=-1)
Lower the degree of the basis by the given amount, preserving knots multiplicity.
Definition gsBasis.hpp:641
virtual domainIter makeDomainIterator() const
Create a domain iterator for the computational mesh of this basis, that points to the first element o...
Definition gsBasis.hpp:542
memory::unique_ptr< gsGeometry< T > > interpolateData(gsMatrix< T > const &vals, gsMatrix< T > const &pts) const
Applies interpolation given the parameter values pts and values vals.
Definition gsBasis.hpp:240
virtual uPtr componentBasis_withIndices(boxComponent b, gsMatrix< index_t > &indices, bool noBoundary=true) const
Returns the basis that corresponds to the component.
Definition gsBasis.hpp:383
virtual short_t totalDegree() const
If the basis is of polynomial or piecewise polynomial type, then this function returns the total poly...
Definition gsBasis.hpp:695
virtual void uniformRefine_withCoefs(gsMatrix< T > &coefs, int numKnots=1, int mul=1, short_t const dir=-1)
Refine the basis uniformly.
Definition gsBasis.hpp:607
virtual void degreeReduce(short_t const &i=1, short_t const dir=-1)
Reduce the degree of the basis by the given amount, preserve smoothness.
Definition gsBasis.hpp:633
virtual short_t degree(short_t i) const
Degree with respect to the i-th variable. If the basis is a tensor product of (piecewise) polynomial ...
Definition gsBasis.hpp:699
virtual void degreeIncrease(short_t const &i=1, short_t const dir=-1)
Elevate the degree of the basis by the given amount, preserve knots multiplicity.
Definition gsBasis.hpp:637
virtual void eval_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates nonzero basis functions at point u into result.
Definition gsBasis.hpp:466
virtual void active_into(const gsMatrix< T > &u, gsMatrix< index_t > &result) const
Returns the indices of active basis functions at points u, as a list of indices, in result....
Definition gsBasis.hpp:316
virtual void derivFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluate the derivatives of the function described by coefs at points u.
Definition gsBasis.hpp:84
virtual void deriv2Func_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluates the second derivatives of the function described by coefs at points u.
Definition gsBasis.hpp:101
virtual void jacobianFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, gsMatrix< T > &result) const
Evaluate the Jacobian of the function described by coefs at points u. Jacobian matrices are stacked i...
Definition gsBasis.hpp:58
void setDegree(short_t const &i)
Set the degree of the basis (either elevate or reduce) in order to have degree equal to i wrt to each...
Definition gsBasis.hpp:645
memory::unique_ptr< gsBasis > uPtr
Unique pointer for gsBasis.
Definition gsBasis.h:89
virtual memory::unique_ptr< gsGeometry< T > > interpolateAtAnchors(gsMatrix< T > const &vals) const
Applies interpolation of values pts using the anchors as parameter points. May be reimplemented in de...
Definition gsBasis.hpp:267
virtual gsMatrix< index_t > boundaryOffset(boxSide const &s, index_t offset) const
Definition gsBasis.hpp:339
virtual void uniformCoarsen_withCoefs(gsMatrix< T > &coefs, int numKnots=1)
Coarsen the basis uniformly.
Definition gsBasis.hpp:620
virtual void anchor_into(index_t i, gsMatrix< T > &result) const
Returns the anchor point for member i of the basis.
Definition gsBasis.hpp:299
virtual bool isActive(const index_t i, const gsVector< T > &u) const
Returns true if there the point u with non-zero value or derivatives when evaluated at the basis func...
Definition gsBasis.hpp:320
virtual void evalAllDersFunc_into(const gsMatrix< T > &u, const gsMatrix< T > &coefs, const unsigned n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const
Evaluates all derivatives up to order n of the function described by coefs at points u.
Definition gsBasis.hpp:119
virtual void degreeElevate(short_t const &i=1, short_t const dir=-1)
Elevate the degree of the basis by the given amount, preserve smoothness.
Definition gsBasis.hpp:629
virtual void deriv_into(const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates the first partial derivatives of the nonzero basis function.
Definition gsBasis.hpp:474
virtual T getMinCellLength() const
Get the minimum mesh size, as expected for inverse inequalities.
Definition gsBasis.hpp:712
gsMatrix< T > supportInterval(index_t dir) const
Returns an interval that contains the parameter values in direction dir.
Definition gsBasis.hpp:462
virtual gsMatrix< T > support() const
Returns (a bounding box for) the domain of the whole basis.
Definition gsBasis.hpp:454
virtual void refineElements_withCoefs(gsMatrix< T > &coefs, std::vector< index_t > const &boxes)
Refine basis and geometry coefficients to levels.
Definition gsBasis.hpp:595
virtual gsDomain< T > * domain() const
Definition gsBasis.hpp:683
virtual size_t numElements(boxSide const &s=0) const
The number of elements on side s.
Definition gsBasis.hpp:551
virtual const gsBasis< T > & component(short_t i) const
For a tensor product basis, return the (const) 1-d basis for the i-th parameter component.
Definition gsBasis.hpp:563
virtual short_t minDegree() const
If the basis is of polynomial or piecewise polynomial type, then this function returns the minimum po...
Definition gsBasis.hpp:691
void setDegreePreservingMultiplicity(short_t const &i)
Set the degree of the basis (either increase or decrecee) in order to have degree equal to i.
Definition gsBasis.hpp:663
virtual gsMatrix< T > elementInSupportOf(index_t j) const
Returns (the coordinates of) an element in the support of basis function j.
Definition gsBasis.hpp:559
virtual void deriv2Single_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluate the (partial) derivatives of the i-th basis function at points u into result.
Definition gsBasis.hpp:488
virtual void refine(gsMatrix< T > const &boxes, int refExt=0)
Refine the basis on the area defined by the matrix boxes.
Definition gsBasis.hpp:579
virtual void refineElements(std::vector< index_t > const &boxes)
Refinement function, with different sytax for different basis.
Definition gsBasis.hpp:587
virtual size_t elementIndex(const gsVector< T > &u) const
Returns an index for the element which contains point u.
Definition gsBasis.hpp:555
virtual domainIter makeDomainIterator(const boxSide &s) const
Create a boundary domain iterator for the computational mesh this basis, that points to the first ele...
Definition gsBasis.hpp:547
virtual uPtr componentBasis(boxComponent b) const
Returns the basis that corresponds to the component.
Definition gsBasis.hpp:354
virtual void connectivityAtAnchors(gsMesh< T > &mesh) const
Definition gsBasis.hpp:304
virtual void evalDerSingle_into(index_t i, const gsMatrix< T > &u, int n, gsMatrix< T > &result) const
Evaluate the (partial) derivative(s) of order n the i-th basis function at points u into result.
Definition gsBasis.hpp:525
virtual void derivSingle_into(index_t i, const gsMatrix< T > &u, gsMatrix< T > &result) const
Evaluates the (partial) derivatives of the i-th basis function at points u into result.
Definition gsBasis.hpp:478
Class representing a domain. i.e. a collection of elements (triangles, rectangles,...
Definition gsDomain.h:32
virtual short_t domainDim() const =0
Dimension of the (source) domain.
virtual index_t size() const
size
Definition gsFunctionSet.h:613
virtual void evalAllDers_into(const gsMatrix< T > &u, int n, std::vector< gsMatrix< T > > &result, bool sameElement=false) const
Evaluate the nonzero functions and their derivatives up to order n at points u into result.
Definition gsFunctionSet.hpp:81
A matrix with arbitrary coefficient type and fixed or dynamic size.
Definition gsMatrix.h:41
T at(index_t i) const
Returns the i-th element of the vectorization of the matrix.
Definition gsMatrix.h:211
Class Representing a triangle mesh with 3D vertices.
Definition gsMesh.h:32
Sparse matrix class, based on gsEigen::SparseMatrix.
Definition gsSparseMatrix.h:139
A vector with arbitrary coefficient type and fixed or dynamic size.
Definition gsVector.h:37
Provides definition of the BasisFun class.
Provides structs and classes related to interfaces and boundaries.
#define short_t
Definition gsConfig.h:35
#define index_t
Definition gsConfig.h:32
#define GISMO_NO_IMPLEMENTATION
Definition gsDebug.h:129
#define GISMO_ERROR(message)
Definition gsDebug.h:118
#define GISMO_ASSERT(cond, message)
Definition gsDebug.h:89
Provides declaration of DomainIterator abstract interface.
Provides declaration of Geometry abstract interface.
bool less(T1 t1, T2 t2)
Definition gsTemplateTools.h:247
bool greater(T1 t1, T2 t2)
Definition gsTemplateTools.h:313
The G+Smo namespace, containing all definitions for the library.
S give(S &x)
Definition gsMemory.h:266
Struct which represents an interface between two patches.
Definition gsBoundary.h:650
Struct that defines the boundary sides and corners and types of a geometric object.
Definition gsBoundary.h:56
Struct which represents a certain component (interior, face, egde, corner).
Definition gsBoundary.h:445
location
Represents a location.
Definition gsBoundary.h:530
location locationForDirection(index_t direction) const
Definition gsBoundary.cpp:154
short_t totalDim() const
Dimension of the computational domain (the box itself)
Definition gsBoundary.h:506
Struct which represents a certain corner of a hyper-cube.
Definition gsBoundary.h:292