G+Smo  24.08.0
Geometry + Simulation Modules
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gsGeoUtils.hpp File Reference

Provides isogeometric meshing and modelling routines. More...

+ Include dependency graph for gsGeoUtils.hpp:

Go to the source code of this file.

Namespaces

 gismo
 The G+Smo namespace, containing all definitions for the library.
 

Functions

template<class T >
index_t checkDisplacement (gsMultiPatch< T > const &domain, gsMultiPatch< T > const &displacement)
 Checks whether the deformed configuration is bijective, i.e. det(Jac(geo+disp)) > 0; returns -1 if yes or the number of the first invalid patch; samples the Jacobian elementwise at the quadrature points and the corners.
 
template<class T >
index_t checkGeometry (gsMultiPatch< T > const &domain)
 Checks whether configuration is bijective, i.e. det(Jac(geo)) > 0; returns -1 if yes or the number of the first invalid patch; samples the Jacobian elementwise at the quadrature points and the corners.
 
template<class T >
gsMatrix< T > combine (gsMatrix< T > const &A, gsMatrix< T > const &B, T x, index_t iA=0, index_t iB=0, bool cols=false)
 compute a convex combination of two points given as ROWS of matrices numbered <iA> and <iB>; set <cols> to <true> to give points as COLUMNS
 
template<class T >
curveDistance (gsGeometry< T > const &curveA, gsGeometry< T > const &curveB, index_t numSamples=1000)
 returns a distance in L2 sense between two curves parametrized from 0 to 1
 
template<class T >
curveLength (const gsGeometry< T > &geo)
 compute curve length
 
template<class T >
displacementJacRatio (gsMultiPatch< T > const &domain, gsMultiPatch< T > const &displacement)
 Returns min(Jacobian determinant) divided by max(Jacobian determinant) for geo+disp samples the Jacobian elementwise at the quadrature points and the corners.
 
template<class T >
gsVector< unsigned > distributePoints (const gsGeometry< T > &geo, unsigned numPoints)
 distributes sampling points according to the length of the patch in each parametric direction
 
template<class T >
gsGeometry< T >::uPtr fittingDirichlet (gsMatrix< T > const &params, gsMatrix< T > const &points, gsBasis< T > const &basis)
 fits a given parametrized point cloud with a curve using a given basis; the resulting curve interpolates the first and the last points
 
template<class T >
gsGeometry< T >::uPtr genCircle (index_t deg, index_t num, T radius=1., T x0=0., T y0=0., T angle0=0., T arcAngle=2 *EIGEN_PI)
 
template<class T >
gsGeometry< T >::uPtr genCircle (gsBasis< T > &basis, T radius=1., T x0=0., T y0=0., T angle0=0., T arcAngle=2 *EIGEN_PI)
 
template<class T >
gsGeometry< T >::uPtr genCylinder (gsGeometry< T > const &base, index_t deg, index_t num, T height)
 generates a 3D tensor product B-spline cylindrical patch
 
template<class T >
gsGeometry< T >::uPtr genLine (index_t deg, index_t num, gsMatrix< T > const &A, gsMatrix< T > const &B, index_t iA=0, index_t iB=0)
 
template<class T >
void genMuscleMP (gsGeometry< T > const &muscleSurface, gsMultiPatch< T > &result)
 This is more of a script than a function. I use it to generate a multi-parametrization for the biceps model given its surface.
 
template<class T >
gsGeometry< T >::uPtr genPatchInterpolation (gsGeometry< T > const &A, gsGeometry< T > const &B, index_t deg, index_t num, bool xiDir=false)
 
template<class T >
gsGeometry< T >::uPtr genPatchScaling (gsGeometry< T > const &boundary, index_t deg, index_t num, T scaling, gsVector< T > const &center)
 generates a tensor product B-spline bdry south | front patch by scaling a given geometry object \ / | | | towards a given center point; (x,y) north | back oppositely lying bdry is generated by scaling the original boundary with <scaling> coeff
 
template<class T >
gsGeometry< T >::uPtr genQuad (index_t xiDeg, index_t xiNum, index_t etaDeg, index_t etaNum, gsMatrix< T > const &A, gsMatrix< T > const &B, gsMatrix< T > const &C, gsMatrix< T > const &D, index_t iA=0, index_t iB=0, index_t iC=0, index_t iD=0)
 generates a quad patch given by its four C—D corners with the following orientation; | | the points are given as ROWS of matrices A—B
 
template<class T >
void genSamplingPoints (const gsVector< T > &lower, const gsVector< T > &upper, const gsQuadRule< T > &quRule, gsMatrix< T > &points)
 Generates a matrix of sampling points for a given parametric element; includes quadrature points for the element as well as the corner points.
 
template<class T >
gsGeometry< T >::uPtr genScrew (gsGeometry< T > const &base, index_t deg, index_t num, T height, T pitch, T x0=0., T y0=0.)
 generates a 3D tensor product B-spline screw-like patch
 
template<class T >
gsGeometry< T >::uPtr genSphere (index_t xiDeg, index_t xiNum, index_t etaDeg, index_t etaNum, T xi0=0., T xi1=2 *EIGEN_PI, T eta0=-EIGEN_PI/2, T eta1=EIGEN_PI/2)
 generates a tensor product B-spline spherical patch with radius 1 and center at 0 given the degrees and number of control points in two parametric dimensions
 
template<class T >
gsGeometry< T >::uPtr genSphere (gsKnotVector< T > &xiKnots, gsKnotVector< T > &etaKnots, T xi0=0., T xi1=2 *EIGEN_PI, T eta0=-EIGEN_PI/2, T eta1=EIGEN_PI/2)
 generates a tensor product B-spline spherical patch with radius 1 and center at 0 given knot vectors for two parametric dimensions
 
template<class T >
gsGeometry< T >::uPtr genSpring (gsGeometry< T > const &crossSection, T springRadius=6.0, T springPitch=2.60258, index_t numQuarterSegments=12, bool nurbs=false)
 generates a 3D NURBS spring using provided geometry as a cross-section
 
template<class T >
geometryJacRatio (gsMultiPatch< T > const &domain)
 Returns min(Jacobian determinant) divided by max(Jacobian determinant); samples the Jacobian elementwise at the quadrature points and the corners.
 
template<class T >
normL2 (gsMultiPatch< T > const &domain, gsMultiPatch< T > const &solution)
 @ Compute norm of the isogeometric solution
 
template<class T >
patchLength (const gsGeometry< T > &geo, short_t dir=0)
 compute length of a patch in a given parametric direction as a mean of all boundary edges corresponding to this direction
 
template<class T >
void plotDeformation (const gsMultiPatch< T > &initDomain, const std::vector< gsMultiPatch< T > > &displacements, std::string fileName, index_t numSamplingPoints=10000)
 
template<class T >
void plotDeformation (const gsMultiPatch< T > &initDomain, const gsMultiPatch< T > &displacement, std::string const &fileName, gsParaviewCollection &collection, index_t step)
 plot a deformed isogeometric mesh and add it to a Paraview collection
 
template<class T >
void plotGeometry (gsMultiPatch< T > const &domain, std::string fileName, index_t numSamples)
 Plots the mesh and the jacobian (if <numSamples> > 0) to Paraview.
 
template<class T >
void plotGeometry (const gsMultiPatch< T > &domain, std::string const &fileName, gsParaviewCollection &collection, index_t step)
 plot an isogeometric mesh and add to collection
 
template<class T >
gsGeometry< T >::uPtr simplifyCurve (gsGeometry< T > const &curve, index_t additionalPoints=0, index_t degree=0, index_t numSamples=1000)
 generates a simplified curve by fitting with the coarsest basis of the same degree; then reparametrizes it using the basis of the original curve; <additionalPoints> increases the number of degrees of freedom; <numSamples> is a number of sampling points for reparametrization
 

Detailed Description

Provides isogeometric meshing and modelling routines.

This file is part of the G+Smo library.

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

Author(s): A.Shamanskiy (2016 - ...., TU Kaiserslautern)